Sundanese - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Sundanese Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.614x | 3.61 | 0.2895% | 1,045,476 |
| 16k | 4.061x | 4.06 | 0.3254% | 930,202 |
| 32k | 4.462x | 4.46 | 0.3575% | 846,599 |
| 64k | 4.793x π | 4.79 | 0.3840% | 788,257 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Sukajaya nyaΓ©ta salah sahiji dΓ©sa di kacamatan CisΓ©wu, KabupatΓ©n Garut, Propinsi...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βsuk ajaya βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βcis Γ©w ... (+13 more) |
23 |
| 16k | βsukajaya βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βcis Γ©wu , ... (+11 more) |
21 |
| 32k | βsukajaya βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βcisΓ©wu , βkabupatΓ©n ... (+10 more) |
20 |
| 64k | βsukajaya βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βcisΓ©wu , βkabupatΓ©n ... (+10 more) |
20 |
Sample 2: Way Sindi nyaΓ©ta salah sahiji DΓ©sa di kacamatan Karya Penggawa, KabupatΓ©n Pesisi...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βway βsin di βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βkarya ... (+13 more) |
23 |
| 16k | βway βsin di βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βkarya ... (+13 more) |
23 |
| 32k | βway βsin di βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βkarya ... (+12 more) |
22 |
| 64k | βway βsindi βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βkarya βpenggawa ... (+11 more) |
21 |
Sample 3: Linggamukti nyaΓ©ta salah sahiji dΓ©sa di kacamatan Sucinaraja, KabupatΓ©n Garut, P...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βlingg am ukti βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βsu ... (+14 more) |
24 |
| 16k | βlingg am ukti βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βsu ... (+14 more) |
24 |
| 32k | βlingg amukti βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βsucinaraja , ... (+11 more) |
21 |
| 64k | βlingg amukti βnyaΓ©ta βsalah βsahiji βdΓ©sa βdi βkacamatan βsucinaraja , ... (+11 more) |
21 |
Key Findings
- Best Compression: 64k achieves 4.793x compression
- Lowest UNK Rate: 8k with 0.2895% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 8,615 | 13.07 | 119,237 | 36.6% | 51.4% |
| 2-gram | Subword | 250 π | 7.96 | 8,527 | 69.1% | 99.4% |
| 3-gram | Word | 3,378 | 11.72 | 118,793 | 51.2% | 64.9% |
| 3-gram | Subword | 2,021 | 10.98 | 49,956 | 27.1% | 75.5% |
| 4-gram | Word | 3,002 | 11.55 | 162,065 | 53.7% | 67.2% |
| 4-gram | Subword | 10,081 | 13.30 | 252,099 | 14.3% | 47.8% |
| 5-gram | Word | 2,066 | 11.01 | 112,479 | 57.2% | 70.2% |
| 5-gram | Subword | 31,527 | 14.94 | 709,433 | 10.6% | 36.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | salah sahiji |
29,861 |
| 2 | astΓ©roid ieu |
29,850 |
| 3 | ieu astΓ©roid |
29,850 |
| 4 | nyaΓ©ta salah |
26,619 |
| 5 | di kacamatan |
25,114 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | nyaΓ©ta salah sahiji |
26,442 |
| 2 | dΓ©sa di kacamatan |
16,291 |
| 3 | salah sahiji dΓ©sa |
15,457 |
| 4 | sahiji dΓ©sa di |
15,449 |
| 5 | rujukan tutumbu kaluar |
14,998 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | salah sahiji dΓ©sa di |
15,449 |
| 2 | sahiji dΓ©sa di kacamatan |
15,446 |
| 3 | nyaΓ©ta salah sahiji dΓ©sa |
15,429 |
| 4 | the international astronomical union |
14,930 |
| 5 | astΓ©roid kacatet gedΓ©na 0 |
14,925 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | salah sahiji dΓ©sa di kacamatan |
15,446 |
| 2 | nyaΓ©ta salah sahiji dΓ©sa di |
15,429 |
| 3 | minangka beubeulahan planΓ©tisimal objΓ©k di |
14,925 |
| 4 | asteroid tΓ©h bagΓ©an tina astΓ©roid |
14,925 |
| 5 | nganjrek deukeut jeung marcapada Γ©ksΓ©ntrisitas |
14,925 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a n |
1,250,483 |
| 2 | a _ |
1,066,804 |
| 3 | n _ |
801,241 |
| 4 | n g |
770,939 |
| 5 | k a |
571,201 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a n _ |
417,933 |
| 2 | _ k a |
355,900 |
| 3 | n a _ |
318,266 |
| 4 | _ d i |
307,852 |
| 5 | a n g |
284,934 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | e u n _ |
144,400 |
| 2 | k e u n |
135,792 |
| 3 | i n a _ |
133,616 |
| 4 | _ d i _ |
127,925 |
| 5 | _ a s t |
120,933 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | k e u n _ |
129,890 |
| 2 | s t Γ© r o |
89,884 |
| 3 | Γ© r o i d |
89,804 |
| 4 | t Γ© r o i |
89,803 |
| 5 | _ a s t Γ© |
89,744 |
Key Findings
- Best Perplexity: 2-gram (subword) with 250
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~37% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.9632 | 1.950 | 8.46 | 260,446 | 3.7% |
| 1 | Subword | 1.1518 | 2.222 | 7.12 | 4,969 | 0.0% |
| 2 | Word | 0.2938 | 1.226 | 1.70 | 2,198,896 | 70.6% |
| 2 | Subword | 0.6319 | 1.550 | 3.75 | 35,377 | 36.8% |
| 3 | Word | 0.0779 | 1.055 | 1.13 | 3,734,334 | 92.2% |
| 3 | Subword | 0.6394 | 1.558 | 3.52 | 132,696 | 36.1% |
| 4 | Word | 0.0225 π | 1.016 | 1.03 | 4,192,253 | 97.7% |
| 4 | Subword | 0.6390 | 1.557 | 3.00 | 466,876 | 36.1% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
di handap dipakΓ© pikeun ngajΓ©ntrΓ©keun pamuka pikeun rahayatna dipaksa nΓ©ken perjangjian anu dirojong...nu kahiji smp rayudin guru lagu kahijina ka tukang balap tim mclaren mercedes benz e300 kakayaannaastΓ©roid amor the iceman winona ryder edgar allan poΓ© 335 sedengkeun magnitudo mutlakna 22 23 3
Context Size 2:
salah sahiji dΓ©sa di kacamatan idi tunong kabupatΓ©n aceh tamiang propinsi acΓ©h indonΓ©sia manyak paye...ieu astΓ©roid kacatet gedΓ©na 0 482 sedengkeun magnitudo mutlakna 26 9 ari nu jadi rΓ©fΓ©rΓ©nsina mah nya...astΓ©roid ieu asteroid tΓ©h bagΓ©an tina astΓ©roid amor anu nganjrek deukeut jeung marcapada Γ©ksΓ©ntrisit...
Context Size 3:
nyaΓ©ta salah sahiji dΓ©sa di kacamatan tano tombangan angkola kabupatΓ©n tapanuli kidul propinsi sumat...dΓ©sa di kacamatan jujuhan kabupatΓ©n bungo propinsi jambi indonΓ©sia renah mendaluh renah mendaluhsalah sahiji dΓ©sa di kacamatan bantarujeg kabupatΓ©n majalengka propinsi jawa barat anggota mpr fkp d...
Context Size 4:
salah sahiji dΓ©sa di kacamatan hantara kabupatΓ©n kuningan propinsi jawa barat indonΓ©sia beusi mangru...sahiji dΓ©sa di kacamatan bangun purba kabupatΓ©n deli serdang propinsi sumatra kalΓ©r indonΓ©sia hinai ...nyaΓ©ta salah sahiji dΓ©sa di kacamatan pesisir bukit kota sungai penuh propinsi jambi indonΓ©sia pesis...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
as)_neugeukinua__dil_dΓ©rtapiswi_n_pleukeuloral_g
Context Size 2:
an_teun_(ter._amaa_muh_so._β_lo_nan_to_ta_bangkoti_
Context Size 3:
an_cijelia,_saratu_kalΓ©n_biblanda_nyna_jeunakeun_baria
Context Size 4:
eun_ngritic_swedishkeun_yΓ©n_anu_anu_jaina_katematika_bebe
Key Findings
- Best Predictability: Context-4 (word) with 97.7% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (466,876 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 116,875 |
| Total Tokens | 6,065,431 |
| Mean Frequency | 51.90 |
| Median Frequency | 4 |
| Frequency Std Dev | 952.21 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | di | 128,510 |
| 2 | nu | 90,309 |
| 3 | astΓ©roid | 89,739 |
| 4 | jeung | 83,019 |
| 5 | anu | 78,713 |
| 6 | nyaΓ©ta | 74,994 |
| 7 | ieu | 72,373 |
| 8 | dina | 59,209 |
| 9 | the | 54,138 |
| 10 | tina | 45,336 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | Γ©ksomΓ©tΓ©orologi | 2 |
| 2 | kejut | 2 |
| 3 | advektif | 2 |
| 4 | sirkulasina | 2 |
| 5 | pamelajaran | 2 |
| 6 | mΓ©chain | 2 |
| 7 | reflektor | 2 |
| 8 | spiralna | 2 |
| 9 | sombrΓ©ro | 2 |
| 10 | halona | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0758 |
| RΒ² (Goodness of Fit) | 0.997896 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 40.3% |
| Top 1,000 | 65.1% |
| Top 5,000 | 80.6% |
| Top 10,000 | 86.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9979 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 40.3% of corpus
- Long Tail: 106,875 words needed for remaining 13.4% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7778 | 0.3399 | N/A | N/A |
| mono_64d | 64 | 0.7854 | 0.2837 | N/A | N/A |
| mono_128d | 128 | 0.7675 | 0.2154 | N/A | N/A |
| aligned_32d | 32 | 0.7778 | 0.3496 | 0.0800 | 0.3720 |
| aligned_64d | 64 | 0.7854 π | 0.2975 | 0.1840 | 0.5560 |
| aligned_128d | 128 | 0.7675 | 0.2138 | 0.2800 | 0.6620 |
Key Findings
- Best Isotropy: aligned_64d with 0.7854 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2833. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 28.0% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 3.692 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.922 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-s |
supaya, sayonara, saimbangna |
-di |
diriku, diandih, diinterprΓ©tasi |
-ka |
kaisaryah, kasuburan, kamilil |
-a |
amorp, adjective, a1 |
-pa |
parki, pangngoranna, pasiapan |
-ma |
mahesa, matsukata, markedly |
-k |
kaisaryah, kustomisasi, ketumbar |
-sa |
sayonara, saimbangna, sacrifice |
Productive Suffixes
| Suffix | Examples |
|---|---|
-n |
peladjaran, citizen, lampahan |
-a |
supaya, neringa, sayonara |
-an |
peladjaran, lampahan, kasuburan |
-na |
saimbangna, tajukna, polipropilΓ©na |
-s |
closures, liabilities, standards |
-un |
nginebkeun, impun, ngagerakkeun |
-ng |
mgΕng, gedang, stemming |
-i |
parki, kustomisasi, diinterprΓ©tasi |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
tion |
2.79x | 59 contexts | tiong, notion, lotion |
angk |
1.64x | 309 contexts | angkΓ©, angke, angka |
ngka |
1.65x | 215 contexts | ingka, angka, ingkah |
ukan |
1.83x | 73 contexts | bukan, sukan, kukang |
ikeu |
2.22x | 30 contexts | ikeun, pikeu, pikeun |
engk |
1.62x | 106 contexts | engkΓ©, engke, engkos |
entu |
1.83x | 49 contexts | tentu, hentu, centum |
sahi |
2.47x | 15 contexts | sahii, sahid, sahih |
ropi |
2.15x | 20 contexts | ropin, tropi, propil |
ndon |
1.76x | 37 contexts | london, condon, bondon |
stΓ©r |
2.63x | 10 contexts | stΓ©ril, stΓ©rol, stΓ©rΓ©o |
roid |
2.34x | 12 contexts | viroid, tiroid, toroid |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-di |
-n |
171 words | diasumsikeun, diiringan |
-s |
-a |
132 words | suriawiria, senjatana |
-ka |
-n |
118 words | kadΓ©wasaan, kacamtan |
-pa |
-n |
116 words | payen, paragon |
-ka |
-an |
106 words | kadΓ©wasaan, kacamtan |
-p |
-n |
105 words | payen, paragon |
-di |
-un |
103 words | diasumsikeun, direalisasikeun |
-pa |
-an |
99 words | panyusuhan, panyocokan |
-s |
-n |
80 words | satupun, sakapeun |
-p |
-an |
80 words | panyusuhan, panyocokan |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| pengajian | pengaj-i-an |
7.5 | i |
| impianana | impia-na-na |
7.5 | na |
| electricians | electrici-an-s |
7.5 | an |
| panghitungan | panghitu-ng-an |
7.5 | ng |
| heulaanan | heula-an-an |
7.5 | an |
| perdananya | perdan-an-ya |
7.5 | an |
| deukeuteunana | deukeuteu-na-na |
7.5 | na |
| kotakulon | ko-ta-kulon |
7.5 | kulon |
| valenciennes | valencien-n-es |
7.5 | n |
| brisingidae | brisingid-a-e |
7.5 | a |
| intermittent | intermitte-n-t |
7.5 | n |
| palestinians | palestini-an-s |
7.5 | an |
| ngawurukanana | ngawuruka-na-na |
7.5 | na |
| dicangkokkeun | dicangkokk-e-un |
7.5 | e |
| andelfingen | andelfi-ng-en |
7.5 | ng |
6.6 Linguistic Interpretation
Automated Insight: The language Sundanese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.79x) |
| N-gram | 2-gram | Lowest perplexity (250) |
| Markov | Context-4 | Highest predictability (97.7%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-10 23:25:18



















