This model predicts the shape (circle, rectangle, diamond, or triangle) of the 1 colored shape (8 colors) in a 224 x 224 x 3 image.
This model is a part of a how to tutorial on fitting PyTorch models.
The model is trained on 2000 examples for each color and shape combo (64,000 samples in total) simulated according to https://github.com/sdtemple/zootopia3.
The model is tested/evaluated on the dataset https://huggingface.co/datasets/sdtemple/colored-shapes, which has slightly smaller shapes simulated (out of distribution) relative to the training data. The metrics below can be +- a few points depending on random seed.
- Accuracy: 75%
- Min precision (triangle): 57%
- Max precision (rectangle): 98%
- Min recall (diamond): 66%
- Max recall (triangle): 84%
- AUROC (macro-averaged): 92%
- Min AUROC (diamond): 90%
- Max AUROC (circle): 94%
Compared to https://huggingface.co/sdtemple/color-prediction-model, it is harder to predict the shape than the color of the object.
The model architecture is the following. In light experimentation, I found it important to have multiple convolutions and that too many parameters leads to noisy validation losses by epoch.
MyCNN(
(conv_block): Sequential(
(0): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(9): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(10): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(12): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(14): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(linear_block): Sequential(
(0): Linear(in_features=784, out_features=16, bias=True)
(1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=16, out_features=16, bias=True)
(5): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
(output_block): Linear(in_features=16, out_features=4, bias=True)
)
- Downloads last month
- -