Talk2db Collection
Collection
talk2db is my AI-native SQL ecosystem dataset β fine-tuned model β deployed API. Built to let humans talk and databases listen.
β’
3 items
β’
Updated
Model ID: saadkhi/SQL_Chat_finetuned_model
Base model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit
Model type: LoRA (merged)
Task: Natural Language β SQL query generation + conversational SQL assistance
Language: English
License: Apache 2.0
This model is a fine-tuned version of Phi-3-mini-4k-instruct (4-bit quantized) specialized in understanding natural language questions about databases and generating correct, clean SQL queries.
Best for:
Limitations / Not recommended for:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "saadkhi/SQL_Chat_finetuned_model"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Simple prompt style (chat template is recommended)
prompt = """Show all customers who placed more than 5 orders in 2024"""
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=180,
do_sample=False,
temperature=0.0,
pad_token_id=tokenizer.eos_token_id
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Base model
unsloth/Phi-3-mini-4k-instruct-bnb-4bit