Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
level1: string
level2: string
level3: string
pic_name: string
pic_path: string
pre_dec_file: string
gt_json_file: string
is_longtail: string
Sup_description: string
lt_ele: string
acc_factors: string
COT: string
post_dec: string
is_transfer2p: string
vs
level1: string
level2: string
level3: string
pic_name: string
is_longtail: string
lt_ele: string
acc_factors: list<item: string>
Sup_description: string
post_dec: string
pic_path: string
pre_dec_file: string
gt_json_file: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 572, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              level1: string
              level2: string
              level3: string
              pic_name: string
              pic_path: string
              pre_dec_file: string
              gt_json_file: string
              is_longtail: string
              Sup_description: string
              lt_ele: string
              acc_factors: string
              COT: string
              post_dec: string
              is_transfer2p: string
              vs
              level1: string
              level2: string
              level3: string
              pic_name: string
              is_longtail: string
              lt_ele: string
              acc_factors: list<item: string>
              Sup_description: string
              post_dec: string
              pic_path: string
              pre_dec_file: string
              gt_json_file: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

RADIUS-Drive(及 RADIUS-Data)

本仓库在 Hugging Face 上发布 RADIUS-Drive(风险感知一致性诊断评测基准)。

This Hugging Face repo hosts RADIUS-Drive, a risk-aware diagnostic benchmark for safety-critical autonomous driving.

Benchmark Overview

RADIUS-Drive 关注 Pseudo-Correctness(伪正确性): 模型可能给出表面正确的驾驶决策,但未能识别、定位或验证潜在风险机制。

RADIUS-Drive targets Pseudo-Correctness, where models produce correct-looking driving decisions while failing to trigger, localize, or validate underlying risk factors.

为此,RADIUS-Drive 提出 SAR(Safety → Awareness → Reasoning)诊断协议, 通过跨阶段一致性指标,系统性评估模型在安全关键决策中的 风险感知与推理一致性。

To this end, RADIUS-Drive introduces the SAR (Safety → Awareness → Reasoning) diagnostic protocol, enabling consistency-centric evaluation of risk perception and decision reasoning.

任务 / Tasks

SAF(Safety)

检测模型是否能够识别并响应安全关键风险信号。

Detect whether the model correctly triggers safety awareness under risk-critical conditions.

AWR(Awareness)

评估模型是否能够定位并解释风险来源,而非仅给出结果。

Assess whether the model localizes and explains the source of risk, beyond outcome correctness.

REA(Reasoning)

验证模型的决策是否基于与风险一致的因果推理过程。

Verify whether decisions are supported by risk-consistent causal reasoning.

X-CONS(Cross-Phase Consistency)

检查 Safety、Awareness 与 Reasoning 之间是否存在一致性违背(Pseudo-Correctness)。

Evaluate cross-phase consistency to diagnose pseudo-correct behavior.

关键约定 / Key Conventions

所有样本均配备 可审计的 ground truth,支持reference-based injection 与 reference-free generation 两种场景构造方式。

All samples provide auditable ground truth, supporting both reference-based injection and reference-free generation.

评测结果应同时报告:

阶段内性能(per-phase)

跨阶段一致性指标(e.g., CF-CDA, Guess)

Results should report both per-phase scores and cross-phase consistency metrics.

Dataset Contents

Each instance X is released as an image plus JSON sidecars:

  • dataX.png: the rendered driving scene.
  • dataX.json: taxonomy and post-decision supervision, including:
    • classification (Level-3)
    • lt_ele (dominant element)
    • acc_factors
    • post_dec (reference level and/or plan text)
  • dataX_aligned.json: simulator-ready coarse state for Phase-1 Safety (map/relations/kinematics abstraction).
  • dataX_gt.json: pre-decision action tags for Phase-1 scoring (per-action collision/hazard/safe, and optional best action).

Design Principles

The schema is intentionally minimal:

  • dataX_aligned.json is only as complex as needed for deterministic Safety rollout.
  • dataX.json carries the Phase-2/3 labels required for SAR diagnosis and cross-phase consistency metrics.

Directory Structure

RADIUS_DataSet550/
├── json/                # JSON sidecars for each instance
├── pic/                 # Rendered scene images
├── aligned_dataset.py   # Utility script for alignment
├── example.json
├── example_plot.png
└── README.md

Notes

  • File naming follows the dataX.* convention across image and JSON sidecars.
  • For benchmark usage, refer to the RADIUS_benchmark module documentation.

License

MIT License

Downloads last month
7