best-model

This model is a fine-tuned version of google/vit-base-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5533
  • Accuracy: 0.8289
  • Precision: 0.8457
  • Recall: 0.8289
  • F1: 0.8320
  • Precision Indoor: 0.6897
  • Recall Indoor: 0.8696
  • F1 Indoor: 0.7692
  • Support Indoor: 23
  • Precision Notapplicable: 0.8182
  • Recall Notapplicable: 0.6923
  • F1 Notapplicable: 0.75
  • Support Notapplicable: 13
  • Precision Outdoor: 0.9444
  • Recall Outdoor: 0.85
  • F1 Outdoor: 0.8947
  • Support Outdoor: 40

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Precision Indoor Recall Indoor F1 Indoor Support Indoor Precision Notapplicable Recall Notapplicable F1 Notapplicable Support Notapplicable Precision Outdoor Recall Outdoor F1 Outdoor Support Outdoor
No log 1.0 19 0.9758 0.7237 0.8166 0.7237 0.7386 0.7059 0.5217 0.6 23 0.4483 1.0 0.6190 13 1.0 0.75 0.8571 40
0.9607 2.0 38 0.5533 0.8289 0.8457 0.8289 0.8320 0.6897 0.8696 0.7692 23 0.8182 0.6923 0.75 13 0.9444 0.85 0.8947 40

Framework versions

  • Transformers 4.57.6
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.2
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for chaichy/best-model

Finetuned
(944)
this model