Built with Axolotl

See axolotl config

axolotl version: 0.8.0

base_model: /root/anhnct/Spark-TTS-finetune/extend_vocab_pretrained/LLM
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

trust_remote_code: true

strict: false

datasets:
  - path: .
    data_files: ["/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/elevenlab_dataset_3.jsonl", "/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/elevenlab_dataset_4.jsonl", "/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/elevenlab_dataset_reflex.jsonl", "/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/elevenlab_slow.jsonl", "/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/hf_song_ngu.jsonl", "/root/anhnct/Spark-TTS-finetune/PROMPTS/product_ft_data/LibriTTS.jsonl"]
    type: completion
    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/Simp_22_1_2026


sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 10
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: false
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 50
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 1
save_steps: 10000
save_total_limit: 100
debug:
deepspeed:
weight_decay: 0.0

outputs/Simp_22_1_2026

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.3568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
No log 0.0005 1 5.6361
4.5777 1.0 2216 5.3235
4.5116 2.0 4432 5.3313
4.4611 3.0 6648 5.3390
4.4496 4.0 8864 5.3471
4.4141 5.0 11080 5.3521
4.4031 6.0 13296 5.3541
4.4174 7.0 15512 5.3562
4.4071 8.0 17728 5.3561
4.4179 9.0 19944 5.3567
4.3882 10.0 22160 5.3568

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.4
Downloads last month
1
Safetensors
Model size
0.5B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support