ST YOLO LC V1 quantized
Use case : Object detection
Model description
ST Yolo LC v1 is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
The model is quantized in int8 format using tensorflow lite converter.
Network information
| Network information | Value |
|---|---|
| Framework | TensorFlow Lite |
| Quantization | int8 |
| Paper | https://pjreddie.com/media/files/papers/YOLO9000.pdf |
The models are quantized using tensorflow lite converter.
Network inputs / outputs
For an image resolution of NxM and NC classes
| Input Shape | Description |
|---|---|
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
|---|---|
| (1, WxH, NAx(5+NC)) | FLOAT values Where WXH is the resolution of the output grid cell, NA is the number of anchors and NC is the number of classes |
Recommended Platforms
| Platform | Supported | Recommended |
|---|---|---|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [x] | [x] |
| STM32MP1 | [x] | [x] |
| STM32MP2 | [x] | [] |
| STM32N6 | [x] | [] |
Performances
Metrics
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
Reference NPU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|---|
| st_yololcv1 | COCO-Person | Int8 | 192x192x3 | STM32N6 | 252 | 0 | 269.44 | 3.0.0 |
| st_yololcv1 | COCO-Person | Int8 | 224x224x3 | STM32N6 | 343 | 0 | 276.19 | 3.0.0 |
| st_yololcv1 | COCO-Person | Int8 | 256x256x3 | STM32N6 | 576 | 0 | 276.19 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 192x192x3 | STM32N6 | 252 | 0 | 169.42 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 224x224x3 | STM32N6 | 343 | 0 | 208.17 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 256x256x3 | STM32N6 | 576 | 0 | 208.19 | 3.0.0 |
Reference NPU inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|---|
| st_yololcv1 | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 1.90 | 526.32 | 3.0.0 |
| st_yololcv1 | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.26 | 442.48 | 3.0.0 |
| st_yololcv1 | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 2.90 | 344.83 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 1.85 | 540.54 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 2.26 | 442.48 | 3.0.0 |
| st_yololcv1 | COCO-Person | W4A8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 2.82 | 354.61 | 3.0.0 |
Reference MCU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Series | Activation RAM (KiB) | Runtime RAM (KiB) | Weights Flash (KiB) | Code Flash (KiB) | Total RAM (KiB) | Total Flash (KiB) | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|---|---|---|
| st_yololcv1 | Int8 | 192x192x3 | STM32H7 | 166.29 | 0 | 276.73 | 31.15 | 166.29 | 307.88 | 3.0.0 |
| st_yololcv1 | Int8 | 224x224x3 | STM32H7 | 217.29 | 0 | 276.73 | 31.16 | 217.29 | 307.89 | 3.0.0 |
| st_yololcv1 | Int8 | 256x256x3 | STM32H7 | 278.29 | 0 | 276.73 | 31.16 | 278.29 | 307.89 | 3.0.0 |
Reference MCU inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|
| st_yololcv1 | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 186.85 | 3.0.0 |
| st_yololcv1 | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 255.40 | 3.0.0 |
| st_yololcv1 | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 334.78 | 3.0.0 |
Reference MPU inference time based on COCO Person dataset (see Accuracy for details on dataset)
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| st_yololcv1 | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 5.26 | 93.66 | 6.34 | 0 | v6.1.0 | OpenVX |
| st_yololcv1 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 4.90 | 93.55 | 6.45 | 0 | v6.1.0 | OpenVX |
| st_yololcv1 | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 6.43 | 94.18 | 5.82 | 0 | v6.1.0 | OpenVX |
| st_yololcv1 | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 51.42 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yololcv1 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 72.44 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yololcv1 | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 88.55 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yololcv1 | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 79.26 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yololcv1 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 106.30 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
| st_yololcv1 | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 140.87 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
** To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization
** Note: On STM32MP2 devices, per-channel quantized models are internally converted to per-tensor quantization by the compiler using an entropy-based method. This may introduce a slight loss in accuracy compared to the original per-channel models.
AP on COCO Person dataset
Dataset details: link , License CC BY 4.0 , Quotation[1] , Number of classes: 80, Number of images: 118,287
| Model | Format | Resolution | AP |
|---|---|---|---|
| st_yololcv1 | Int8 | 192x192x3 | 34.7% |
| st_yololcv1 | Float | 192x192x3 | 34.9 % |
| st_yololcv1 | w4w8 | 192x192x3 | 33.94 % |
| st_yololcv1 | Int8 | 224x224x3 | 35.5 % |
| st_yololcv1 | Float | 224x224x3 | 35.8 % |
| st_yololcv1 | w4w8 | 224x224x3 | 34.99 % |
| st_yololcv1 | Int8 | 256x256x3 | 37.2 % |
| st_yololcv1 | Float | 256x256x3 | 37.3 % |
| st_yololcv1 | w4w8 | 256x256x3 | 36.87 % |
* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub here
References
[1] “Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download. @article{DBLP:journals/corr/LinMBHPRDZ14, author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick}, title = {Microsoft {COCO:} Common Objects in Context}, journal = {CoRR}, volume = {abs/1405.0312}, year = {2014}, url = {http://arxiv.org/abs/1405.0312}, archivePrefix = {arXiv}, eprint = {1405.0312}, timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14}, bibsource = {dblp computer science bibliography, https://dblp.org} }