Image Classification

MobileNet V1

Use case : Image classification

Model description

The original MobileNet architecture pioneered the use of depthwise separable convolutions for efficient mobile vision. It dramatically reduces computation and model size while maintaining competitive accuracy.

MobileNet factorizes standard convolutions into depthwise and pointwise operations, dramatically reducing computational cost. The architecture supports a width multiplier (Alpha) to scale channel dimensions (a025 = 0.25x, a050 = 0.5x, a075 = 0.75x), and uses linear bottleneck for efficient channel expansion and compression.

Resolution multipliers can further scale input resolution for additional efficiency, making MobileNet ideal for real-time mobile applications and resource-constrained embedded systems.

(source: https://arxiv.org/abs/1704.04861)

The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.

Network information

Network Information Value
Framework Torch
MParams ~0.46–2.55 M
Quantization Int8
Provenance https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
Paper https://arxiv.org/abs/1704.04861

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [] []
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
  • All the models are trained from scratch on Imagenet dataset

Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
mobilenet_a025_pt_224 Imagenet Int8 224×224×3 STM32N6 392 0 469.45 3.0.0
mobilenet_a050_pt_224 Imagenet Int8 224×224×3 STM32N6 588 0 1318.3 3.0.0
mobilenet_a075_pt_224 Imagenet Int8 224×224×3 STM32N6 1323 0 2612.79 3.0.0
mobilenetb_a025_pt_224 Imagenet Int8 224×224×3 STM32N6 392 0 469.3 3.0.0
mobilenetb_a050_pt_224 Imagenet Int8 224×224×3 STM32N6 588 0 1317.91 3.0.0
mobilenetb_a075_pt_224 Imagenet Int8 224×224×3 STM32N6 1323 0 2602.29 3.0.0

Reference NPU inference time and imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
mobilenet_a025_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 2.98 335.57 3.0.0
mobilenet_a050_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 6.55 152.67 3.0.0
mobilenet_a075_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 11.73 85.25 3.0.0
mobilenetb_a025_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 2.89 345.90 3.0.0
mobilenetb_a050_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 6.65 150.38 3.0.0
mobilenetb_a075_pt_224 Imagenet Int8 224x224x3 STM32N6570-DK NPU/MCU 11.70 85.47 3.0.0

Accuracy with Imagenet dataset

Dataset details: link Number of classes: 1000. To perform the quantization, we calibrated the activations with a random subset of the training set. For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.

Model Format Resolution Top 1 Accuracy
mobilenet_a025_pt Float 224x224x3 54.81 %
mobilenet_a025_pt Int8 224x224x3 50.55 %
mobilenet_a050_pt Float 224x224x3 66.60 %
mobilenet_a050_pt Int8 224x224x3 64.37 %
mobilenet_a075_pt Float 224x224x3 71.01 %
mobilenet_a075_pt Int8 224x224x3 69.91 %
mobilenetb_a025_pt Float 224x224x3 55.53 %
mobilenetb_a025_pt Int8 224x224x3 53.81 %
mobilenetb_a050_pt Float 224x224x3 67.44 %
mobilenetb_a050_pt Int8 224x224x3 65.96 %
mobilenetb_a075_pt Float 224x224x3 71.46 %
mobilenetb_a075_pt Int8 224x224x3 69.72 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] - Dataset: Imagenet (ILSVRC 2012) — https://www.image-net.org/

[2] - Model: MobileNets — https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for STMicroelectronics/mobilenet_pt