Image Classification

FDMobileNet

Use case : Image classification

Model description

Fast-Downsampling MobileNet (FDMobileNet) is an optimized variant of MobileNet designed for extremely fast inference. It achieves speed improvements through aggressive early spatial reduction while maintaining reasonable accuracy.

FDMobileNet employs a fast downsampling strategy that reduces spatial dimensions early in the network to minimize computation. It retains depthwise separable convolutions inherited from MobileNet for parameter efficiency, and uses a width multiplier (Alpha) to scale the number of channels (a025 = 0.25x, a050 = 0.5x, a075 = 0.75x).

Among the fastest models in the model zoo, FDMobileNet is ideal for ultra-low-latency real-time applications and battery-powered devices with strict power constraints.

(source: https://arxiv.org/abs/1802.03750)

The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.

Network information

Network Information Value
Framework Torch
MParams ~0.37–1.77 M
Quantization Int8
Provenance https://github.com/qinzheng93/FD-MobileNet
Paper https://arxiv.org/abs/1802.03750

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [] []
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
  • All the models are trained from scratch on Imagenet dataset

Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
fdmobilenet_a025_pt_224 Imagenet Int8 224×224×3 STM32N6 294 0 377.03 3.0.0
fdmobilenet_a050_pt_224 Imagenet Int8 224×224×3 STM32N6 343 0 973.39 3.0.0
fdmobilenet_a075_pt_224 Imagenet Int8 224×224×3 STM32N6 441 0 1813.66 3.0.0

Reference NPU inference time on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
fdmobilenet_a025_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 1.88 531.91 3.0.0
fdmobilenet_a050_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 4.07 245.70 3.0.0
fdmobilenet_a075_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 6.83 146.41 3.0.0

Accuracy with Imagenet dataset

Model Format Resolution Top 1 Accuracy
fdmobilenet_a025_pt Float 224x224x3 45.37 %
fdmobilenet_a025_pt Int8 224x224x3 29.73 %
fdmobilenet_a050_pt Float 224x224x3 58.04 %
fdmobilenet_a050_pt Int8 224x224x3 41.58 %
fdmobilenet_a075_pt Float 224x224x3 62.10 %
fdmobilenet_a075_pt Int8 224x224x3 60.29 %
Model Format Resolution Top 1 Accuracy
fdmobilenet_a025_pt Float 224x224x3 45.37 %
fdmobilenet_a025_pt Int8 224x224x3 29.73 %
fdmobilenet_a050_pt Float 224x224x3 58.04 %
fdmobilenet_a050_pt Int8 224x224x3 41.58 %
fdmobilenet_a075_pt Float 224x224x3 62.10 %
fdmobilenet_a075_pt Int8 224x224x3 60.29 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] - Dataset: Imagenet (ILSVRC 2012) — https://www.image-net.org/

[2] - Model: FD-MobileNet — https://arxiv.org/abs/1802.03750

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for STMicroelectronics/fdmobilenet_pt