Towards Deployable OCR models for Indic languages
Paper
•
2205.06740
•
Published
AssameseOCR is a vision-language model for Optical Character Recognition (OCR) of printed Assamese text. Built on Microsoft's Florence-2-large foundation model with a custom character-level decoder, it achieves 94.67% character accuracy on the Mozhi dataset.
Image (768×768)
↓
Florence-2 Vision Encoder (frozen, 360M params)
↓
Vision Projection (1024 → 512 dim)
↓
Transformer Decoder (4 layers, 8 heads)
↓
Character-level predictions (187 vocab)
Key Components:
Hardware:
Hyperparameters:
Training Strategy:
| Split | Character Accuracy | Loss |
|---|---|---|
| Epoch 1 (Val) | 91.61% | 0.2844 |
| Epoch 2 (Val) | 94.09% | 0.1548 |
| Epoch 3 (Val) | 94.67% | 0.1221 |
Character Error Rate (CER): ~5.33%
The model achieves strong performance for a foundation model approach:
The 5% gap is expected when adapting a general vision-language model versus training a specialized OCR architecture. However, AssameseOCR offers:
pip install torch torchvision transformers pillow
import torch
import torch.nn as nn
from PIL import Image
from transformers import AutoModelForCausalLM, CLIPImageProcessor
from huggingface_hub import hf_hub_download
import json
# CharTokenizer class
class CharTokenizer:
def __init__(self, vocab):
self.vocab = vocab
self.char2id = {c: i for i, c in enumerate(vocab)}
self.id2char = {i: c for i, c in enumerate(vocab)}
self.pad_token_id = self.char2id["<pad>"]
self.bos_token_id = self.char2id["<s>"]
self.eos_token_id = self.char2id["</s>"]
def encode(self, text, max_length=None, add_special_tokens=True):
ids = [self.bos_token_id] if add_special_tokens else []
for ch in text:
ids.append(self.char2id.get(ch, self.char2id["<unk>"]))
if add_special_tokens:
ids.append(self.eos_token_id)
if max_length:
ids = ids[:max_length]
if len(ids) < max_length:
ids += [self.pad_token_id] * (max_length - len(ids))
return ids
def decode(self, ids, skip_special_tokens=True):
chars = []
for i in ids:
ch = self.id2char.get(i, "")
if skip_special_tokens and ch.startswith("<"):
continue
chars.append(ch)
return "".join(chars)
@classmethod
def load(cls, path):
with open(path, "r", encoding="utf-8") as f:
vocab = json.load(f)
return cls(vocab)
# FlorenceCharOCR model class
class FlorenceCharOCR(nn.Module):
def __init__(self, florence_model, vocab_size, vision_hidden_dim, decoder_hidden_dim=512, num_layers=4):
super().__init__()
self.florence_model = florence_model
for param in self.florence_model.parameters():
param.requires_grad = False
self.vision_proj = nn.Linear(vision_hidden_dim, decoder_hidden_dim)
self.embedding = nn.Embedding(vocab_size, decoder_hidden_dim)
decoder_layer = nn.TransformerDecoderLayer(
d_model=decoder_hidden_dim,
nhead=8,
batch_first=True
)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
self.fc_out = nn.Linear(decoder_hidden_dim, vocab_size)
def forward(self, pixel_values, tgt_ids, tgt_mask=None):
with torch.no_grad():
vision_feats = self.florence_model._encode_image(pixel_values)
vision_feats = self.vision_proj(vision_feats)
tgt_emb = self.embedding(tgt_ids)
decoder_out = self.decoder(tgt_emb, vision_feats, tgt_mask=tgt_mask)
logits = self.fc_out(decoder_out)
return logits
# Load components
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download files from HuggingFace
tokenizer_path = hf_hub_download(repo_id="MWirelabs/assamese-ocr", filename="assamese_char_tokenizer.json")
model_path = hf_hub_download(repo_id="MWirelabs/assamese-ocr", filename="assamese_ocr_best.pt")
# Load tokenizer
char_tokenizer = CharTokenizer.load(tokenizer_path)
# Load Florence base model
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large-ft",
trust_remote_code=True
).to(device)
# Load image processor
image_processor = CLIPImageProcessor.from_pretrained("microsoft/Florence-2-large-ft")
# Initialize OCR model
ocr_model = FlorenceCharOCR(
florence_model=florence_model,
vocab_size=len(char_tokenizer.vocab),
vision_hidden_dim=1024,
decoder_hidden_dim=512,
num_layers=4
).to(device)
# Load trained weights
checkpoint = torch.load(model_path, map_location=device)
ocr_model.load_state_dict(checkpoint['model_state_dict'])
ocr_model.eval()
# Inference function
def recognize_text(image_path):
# Load and process image
image = Image.open(image_path).convert("RGB")
pixel_values = image_processor(images=[image], return_tensors="pt")['pixel_values'].to(device)
# Generate prediction
with torch.no_grad():
# Start with BOS token
generated_ids = [char_tokenizer.bos_token_id]
for _ in range(128): # max length
tgt_tensor = torch.tensor([generated_ids], device=device)
logits = ocr_model(pixel_values, tgt_tensor)
# Get next token
next_token = logits[0, -1].argmax().item()
generated_ids.append(next_token)
# Stop if EOS
if next_token == char_tokenizer.eos_token_id:
break
# Decode
text = char_tokenizer.decode(generated_ids, skip_special_tokens=True)
return text
# Example usage
result = recognize_text("assamese_text.jpg")
print(f"Recognized text: {result}")
The character-level tokenizer includes:
<pad>, <s>, </s>, <unk>, <OCR>, <lang_as>)If you use AssameseOCR in your research, please cite:
@software{assameseocr2026,
author = {MWire Labs},
title = {AssameseOCR: Vision-Language Model for Assamese Text Recognition},
year = {2026},
publisher = {Hugging Face},
url = {https://huggingface.co/MWirelabs/assamese-ocr}
}
Part of the MWire Labs NLP suite:
Base model
microsoft/Florence-2-large-ft