File size: 5,560 Bytes
d2f661a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from bisect import bisect_left

import numpy as np
import pytorch_lightning as pl
from torch.utils.data import DataLoader

from . import batch


def get_chunks(

    primary_raw, valid_frac=0.1, test_frac=0.1,

    chunk_seconds=2*24*60*60, random_seed=None

):
    t0 = min(
        primary_raw["patch_times"][0],
        primary_raw["zero_patch_times"][0]
    )
    t1 = max(
        primary_raw["patch_times"][-1],
        primary_raw["zero_patch_times"][-1]
    )+1

    rng = np.random.RandomState(seed=random_seed)
    chunk_limits = np.arange(t0,t1,chunk_seconds)
    num_chunks = len(chunk_limits)-1
    
    chunk_ind = np.arange(num_chunks)
    rng.shuffle(chunk_ind)
    i_valid = int(round(num_chunks * valid_frac))
    i_test = i_valid + int(round(num_chunks * test_frac))
    chunk_ind = {
        "valid": chunk_ind[:i_valid],
        "test": chunk_ind[i_valid:i_test],
        "train": chunk_ind[i_test:]
    }
    def get_chunk_limits(chunk_ind_split):
        return sorted(
            (chunk_limits[i], chunk_limits[i+1])
            for i in chunk_ind_split
        )
    chunks = {
        split: get_chunk_limits(chunk_ind_split)
        for (split, chunk_ind_split) in chunk_ind.items()
    }
    return chunks


def train_valid_test_split(

    raw_data, primary_raw_var, chunks=None, **kwargs

):
    if chunks is None:
        primary = raw_data[primary_raw_var] 
        chunks = get_chunks(primary, **kwargs)

    def split_chunks_from_array(x, chunks_split, times):
        n = 0
        chunk_ind = []
        for (t0,t1) in chunks_split:
            k0 = bisect_left(times, t0)
            k1 = bisect_left(times, t1)
            n += k1 - k0
            chunk_ind.append((k0,k1))
        
        shape = (n,) + x.shape[1:]
        x_chunk = np.empty_like(x, shape=shape)
        
        j0 = 0
        for (k0,k1) in chunk_ind:
            j1 = j0 + (k1-k0)
            x_chunk[j0:j1,...] = x[k0:k1,...]
            j0 = j1

        return x_chunk

    split_raw_data = {
        split: {var: {} for var in raw_data}
        for split in chunks
    }
    
    for (var, raw_data_var) in raw_data.items():
        for (split, chunks_split) in chunks.items():
            
            #split_raw_data[split][var]["patches"] = \
            #    split_chunks_from_array(
            #        raw_data_var["patches"], chunks_split,
            #        raw_data_var["patch_times"]
            #    )
            #split_raw_data[split][var]["patch_coords"] = \
            #    split_chunks_from_array(
            #        raw_data_var["patch_coords"], chunks_split,
            #        raw_data_var["patch_times"]
            #    )
            #split_raw_data[split][var]["patch_times"] = \
            #    split_chunks_from_array(
            #        raw_data_var["patch_times"], chunks_split,
            #        raw_data_var["patch_times"]
            #    )
            #split_raw_data[split][var]["zero_patch_coords"] = \
            #    split_chunks_from_array(
            #        raw_data_var["zero_patch_coords"], chunks_split,
            #        raw_data_var["zero_patch_times"]
            #    )
            #split_raw_data[split][var]["zero_patch_times"] = \
            #    split_chunks_from_array(
            #        raw_data_var["zero_patch_times"], chunks_split,
            #        raw_data_var["zero_patch_times"]
            #    )

            added_keys = set(split_raw_data[split][var].keys())
            missing_keys = set(raw_data[var].keys()) - added_keys
            for k in missing_keys:
                split_raw_data[split][var][k] = raw_data[var][k]

    return (split_raw_data, chunks)


class DataModule(pl.LightningDataModule):
    def __init__(

        self, 

        variables, raw, predictors, target, primary_var,

        sampling_bins, sampler_file,

        batch_size=8,

        train_epoch_size=10, valid_epoch_size=2, test_epoch_size=10,

        valid_seed=None, test_seed=None,

        **kwargs

    ):
        super().__init__()
        self.batch_gen = {
            split: batch.BatchGenerator(
                variables, raw_var, predictors, target, primary_var,
                sampling_bins=sampling_bins, batch_size=batch_size,
                sampler_file=sampler_file.get(split),
                augment=(split=="train"),
                **kwargs
            )
            for (split,raw_var) in raw.items()
        }
        self.datasets = {}
        if "train" in self.batch_gen:
            self.datasets["train"] = batch.StreamBatchDataset(
                self.batch_gen["train"], train_epoch_size
            )
        if "valid" in self.batch_gen:
            self.datasets["valid"] = batch.DeterministicBatchDataset(
                self.batch_gen["valid"], valid_epoch_size, random_seed=valid_seed
            )
        if "test" in self.batch_gen:
             self.datasets["test"] = batch.DeterministicBatchDataset(
                self.batch_gen["test"], test_epoch_size, random_seed=test_seed
            )

    def dataloader(self, split):
        return DataLoader(
            self.datasets[split], batch_size=None,
            pin_memory=True, num_workers=0
        )

    def train_dataloader(self):
        return self.dataloader("train")

    def val_dataloader(self):
        return self.dataloader("valid")

    def test_dataloader(self):
        return self.dataloader("test")