File size: 43,968 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Reinforcement Learning Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions on Reinforcement Learning, covering rewards, value functions, and core algorithms.",
  "questions": [
    {
      "id": 1,
      "questionText": "In reinforcement learning, what is the reward?",
      "options": [
        "A vector representing all possible actions",
        "A deterministic sequence of states",
        "A scalar feedback signal indicating how good the last action was",
        "The final goal of the environment"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reward is the immediate scalar feedback from the environment that tells the agent how good its action was."
    },
    {
      "id": 2,
      "questionText": "The cumulative sum of future rewards is called:",
      "options": [
        "Transition probability",
        "Value function",
        "State space",
        "Policy"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Value function estimates the expected total (cumulative) reward an agent can get from a state or state-action pair."
    },
    {
      "id": 3,
      "questionText": "Which term represents immediate reward at time t?",
      "options": [
        "s_t",
        "v_t",
        "π_t",
        "r_t"
      ],
      "correctAnswerIndex": 3,
      "explanation": "r_t denotes the reward received at the current time step t."
    },
    {
      "id": 4,
      "questionText": "Which of the following is TRUE about the value function V(s)?",
      "options": [
        "It measures reward only at the next step",
        "It gives expected cumulative reward starting from state s",
        "It is a policy-independent constant",
        "It directly outputs the best action"
      ],
      "correctAnswerIndex": 1,
      "explanation": "V(s) estimates the expected sum of future rewards starting from state s following a policy π."
    },
    {
      "id": 5,
      "questionText": "Discount factor γ is used to:",
      "options": [
        "Ignore past rewards",
        "Increase the reward infinitely",
        "Weight future rewards less than immediate rewards",
        "Randomize state transitions"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Discount factor 0 ≤ γ ≤ 1 ensures future rewards are worth less than immediate ones."
    },
    {
      "id": 6,
      "questionText": "Q(s, a) represents:",
      "options": [
        "Probability of next state",
        "Policy mapping",
        "Value of taking action a in state s",
        "Immediate reward only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q-function measures expected cumulative reward when taking action a in state s and then following policy π."
    },
    {
      "id": 7,
      "questionText": "The difference between expected reward and actual reward is called:",
      "options": [
        "Discount factor",
        "Greedy error",
        "Temporal Difference (TD) error",
        "Policy gradient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD error δ = r + γV(s') − V(s) measures how much the predicted value differs from observed reward."
    },
    {
      "id": 8,
      "questionText": "Immediate reward is:",
      "options": [
        "A policy parameter",
        "Sum of all future rewards",
        "The feedback obtained right after an action",
        "Probability of action success"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Immediate reward is the feedback signal received immediately after taking an action in a state."
    },
    {
      "id": 9,
      "questionText": "Which function tells the value of a state under a policy π?",
      "options": [
        "Q-value function Q(s,a)",
        "Reward function R(s)",
        "State value function V(s)",
        "Transition function T(s,a)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "V(s) gives expected cumulative reward starting from state s under policy π."
    },
    {
      "id": 10,
      "questionText": "Which function evaluates both state and action pair?",
      "options": [
        "V-value function V(s)",
        "Discount function γ",
        "Q-value function Q(s, a)",
        "Reward function R(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q(s,a) evaluates expected cumulative reward for taking action a in state s and then following policy π."
    },
    {
      "id": 11,
      "questionText": "What is the purpose of a reward function R(s,a)?",
      "options": [
        "To define environment dynamics",
        "To store past transitions",
        "To map states to actions deterministically",
        "To provide feedback to agent about quality of actions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Reward function defines the immediate payoff received by the agent for taking an action in a state."
    },
    {
      "id": 12,
      "questionText": "Which value function is policy-specific?",
      "options": [
        "R(s,a)",
        "V*(s)",
        "Q*(s,a)",
        "Vπ(s)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Vπ(s) depends on the specific policy π being followed."
    },
    {
      "id": 13,
      "questionText": "What is the difference between V(s) and Q(s,a)?",
      "options": [
        "V(s) considers only state; Q(s,a) considers state-action pair",
        "They are identical",
        "V(s) is deterministic; Q(s,a) is random",
        "V(s) gives immediate reward; Q(s,a) gives discounted reward"
      ],
      "correctAnswerIndex": 0,
      "explanation": "V(s) measures value of a state; Q(s,a) measures value of taking a specific action in that state."
    },
    {
      "id": 14,
      "questionText": "If γ=0 in RL, the agent:",
      "options": [
        "Considers only immediate rewards",
        "Maximizes long-term reward",
        "Ignores rewards completely",
        "Considers all future rewards equally"
      ],
      "correctAnswerIndex": 0,
      "explanation": "γ=0 makes the agent short-sighted, focusing only on immediate reward."
    },
    {
      "id": 15,
      "questionText": "If γ approaches 1, the agent:",
      "options": [
        "Stops learning",
        "Values future rewards almost as much as immediate rewards",
        "Ignores future rewards",
        "Becomes random"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High γ makes the agent far-sighted, considering long-term consequences."
    },
    {
      "id": 16,
      "questionText": "Which formula defines TD learning update for value function?",
      "options": [
        "V(s) ← r only",
        "Q(s,a) ← r + γmax Q(s',a')",
        "V(s) ← γ V(s')",
        "V(s) ← V(s) + α[r + γV(s') − V(s)]"
      ],
      "correctAnswerIndex": 3,
      "explanation": "TD update modifies V(s) toward observed reward plus discounted next state value."
    },
    {
      "id": 17,
      "questionText": "In RL, reward shaping is used to:",
      "options": [
        "Provide additional intermediate rewards to guide learning",
        "Simplify environment dynamics",
        "Randomize action selection",
        "Remove future rewards"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reward shaping helps the agent learn faster by providing informative intermediate feedback."
    },
    {
      "id": 18,
      "questionText": "Expected cumulative reward starting from state s and following policy π is:",
      "options": [
        "Q*(s,a)",
        "R(s)",
        "Vπ(s)",
        "γ(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Vπ(s) is the expected sum of discounted rewards under policy π starting at state s."
    },
    {
      "id": 19,
      "questionText": "Which reward type encourages agent to achieve long-term goal?",
      "options": [
        "Random reward",
        "Immediate reward only",
        "Negative reward only",
        "Sparse reward"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Sparse or delayed rewards push the agent to consider long-term strategy."
    },
    {
      "id": 20,
      "questionText": "Which function gives the best achievable expected reward from a state?",
      "options": [
        "Immediate reward function R(s)",
        "Optimal value function V*(s)",
        "Qπ(s,a)",
        "Policy function π(s)"
      ],
      "correctAnswerIndex": 1,
      "explanation": "V*(s) represents the maximum expected cumulative reward achievable from state s."
    },
    {
      "id": 21,
      "questionText": "Q*(s,a) represents:",
      "options": [
        "Discount factor",
        "Maximum expected reward for taking action a in state s and following optimal policy",
        "Immediate reward only",
        "Transition probability"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Q*(s,a) estimates the optimal expected return for a specific state-action pair."
    },
    {
      "id": 22,
      "questionText": "If the reward function is poorly designed, the agent may:",
      "options": [
        "Ignore environment",
        "Learn undesired behavior",
        "Increase exploration automatically",
        "Immediately converge to optimal policy"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Incorrect reward leads to reward hacking — agent may maximize reward in unintended ways."
    },
    {
      "id": 23,
      "questionText": "Discounted future reward is calculated as:",
      "options": [
        "γ only",
        "r_t only",
        "r_t + γ r_{t+1} + γ^2 r_{t+2} + …",
        "Sum of unweighted rewards"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Discounted sum reduces importance of rewards further in the future using γ."
    },
    {
      "id": 24,
      "questionText": "What is the purpose of Q-learning?",
      "options": [
        "To generate random actions",
        "To directly update policy probabilities",
        "To learn the optimal action-value function",
        "To compute rewards only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q-learning seeks to learn Q*(s,a) — the optimal expected cumulative reward function."
    },
    {
      "id": 25,
      "questionText": "Monte Carlo methods estimate value function using:",
      "options": [
        "TD error",
        "Actual returns from complete episodes",
        "Policy gradient",
        "Random rewards"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Monte Carlo calculates V(s) or Q(s,a) using the sum of rewards observed in full episodes."
    },
    {
      "id": 26,
      "questionText": "Bootstrapping in value function estimation refers to:",
      "options": [
        "Resetting environment every step",
        "Estimating current value using future estimated values",
        "Using only random actions",
        "Ignoring future rewards"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Bootstrapping updates estimates using other current estimates (e.g., TD learning)."
    },
    {
      "id": 27,
      "questionText": "Which method combines bootstrapping and Monte Carlo ideas for value estimation?",
      "options": [
        "SARSA",
        "Q-learning",
        "TD(λ) learning",
        "Policy gradient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD(λ) uses λ parameter to mix Monte Carlo and TD bootstrapping for more stable learning."
    },
    {
      "id": 28,
      "questionText": "What does SARSA stand for?",
      "options": [
        "Stochastic-Action-Reward-State-Algorithm",
        "State-Action-Reward-State-Action",
        "Supervised-Action-Reward-State-Agent",
        "State-Action-Reward-Sequence-Approximation"
      ],
      "correctAnswerIndex": 1,
      "explanation": "SARSA updates Q-values using the current state, action, reward, next state, and next action."
    },
    {
      "id": 29,
      "questionText": "Which of the following is TRUE about Q-learning?",
      "options": [
        "It only works for deterministic environments",
        "It is on-policy and depends on agent’s current behavior",
        "It is off-policy and learns the optimal Q regardless of agent’s actions",
        "It ignores rewards completely"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q-learning is off-policy: it learns Q*(s,a) while following a different policy for action selection."
    },
    {
      "id": 30,
      "questionText": "Which parameter balances importance of immediate vs future rewards?",
      "options": [
        "Reward function R",
        "Exploration rate ε",
        "Learning rate α",
        "Discount factor γ"
      ],
      "correctAnswerIndex": 3,
      "explanation": "γ determines how much future rewards contribute to current value estimates."
    },
    {
      "id": 31,
      "questionText": "A sparse reward environment means:",
      "options": [
        "Rewards are continuous and immediate",
        "Rewards are given infrequently, usually only on goal completion",
        "All states give the same reward",
        "Rewards are always negative"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Sparse reward settings give feedback rarely, making learning more challenging."
    },
    {
      "id": 32,
      "questionText": "In value-based RL, what is the primary goal of the agent?",
      "options": [
        "Minimize immediate reward",
        "Maximize cumulative discounted reward",
        "Randomly explore environment",
        "Reduce state space"
      ],
      "correctAnswerIndex": 1,
      "explanation": "The agent selects actions that maximize expected cumulative rewards over time."
    },
    {
      "id": 33,
      "questionText": "What is the Bellman equation for V(s)?",
      "options": [
        "V(s) = γ^t * r_t",
        "V(s) = E[r + γV(s’)]",
        "V(s) = r only",
        "V(s) = max Q(s,a)"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Bellman equation expresses value as immediate reward plus discounted expected value of next state."
    },
    {
      "id": 34,
      "questionText": "Which function represents long-term expected reward from taking a specific action?",
      "options": [
        "V(s)",
        "γ(s)",
        "R(s)",
        "Q(s,a)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Q(s,a) evaluates cumulative reward starting with a specific action."
    },
    {
      "id": 35,
      "questionText": "Which function estimates the maximum reward achievable from state s?",
      "options": [
        "Qπ(s,a)",
        "Vπ(s)",
        "V*(s)",
        "R(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "V*(s) is the optimal value function representing maximum achievable reward."
    },
    {
      "id": 36,
      "questionText": "Temporal difference learning updates value estimates using:",
      "options": [
        "Observed reward + estimated value of next state",
        "Random guesses",
        "Policy gradient",
        "Only immediate reward"
      ],
      "correctAnswerIndex": 0,
      "explanation": "TD uses bootstrapping: V(s) ← V(s) + α[r + γV(s') − V(s)]."
    },
    {
      "id": 37,
      "questionText": "Which approach requires full episodes to update values?",
      "options": [
        "TD learning",
        "Monte Carlo",
        "SARSA",
        "Q-learning"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Monte Carlo estimates values based on actual returns from complete episodes."
    },
    {
      "id": 38,
      "questionText": "Reward shaping is beneficial because it:",
      "options": [
        "Eliminates exploration",
        "Guarantees deterministic policy",
        "Removes the discount factor",
        "Speeds up learning by giving intermediate rewards"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Reward shaping provides guidance to the agent via extra signals."
    },
    {
      "id": 39,
      "questionText": "Which of these is a disadvantage of sparse rewards?",
      "options": [
        "Reward scaling issues",
        "Immediate overfitting",
        "Slower convergence and learning difficulty",
        "Exploration elimination"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse rewards provide limited feedback, making learning slower and exploration harder."
    },
    {
      "id": 40,
      "questionText": "Which RL method learns directly from Q-values without policy?",
      "options": [
        "Monte Carlo policy evaluation",
        "Value-based methods (e.g., Q-learning)",
        "Actor-Critic",
        "Policy gradient"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Value-based methods estimate Q-values and derive actions via max(Q) instead of learning policy directly."
    },
    {
      "id": 41,
      "questionText": "The TD error δ = r + γV(s') − V(s) is used to:",
      "options": [
        "Update value estimates incrementally",
        "Determine next action",
        "Select best policy directly",
        "Compute discount factor"
      ],
      "correctAnswerIndex": 0,
      "explanation": "TD error measures prediction discrepancy to adjust value function gradually."
    },
    {
      "id": 42,
      "questionText": "Why is Q*(s,a) considered optimal?",
      "options": [
        "It gives immediate reward",
        "It ignores state transitions",
        "It represents maximum expected reward achievable by any policy",
        "It is randomly assigned"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q* provides the best action-value estimates regardless of current policy."
    },
    {
      "id": 43,
      "questionText": "Which concept allows estimating future rewards without waiting for episode completion?",
      "options": [
        "Reward clipping",
        "Monte Carlo",
        "Sparse reward",
        "Bootstrapping (TD learning)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Bootstrapping updates values using estimates of next state instead of waiting for full episode."
    },
    {
      "id": 44,
      "questionText": "A discount factor γ close to 0 leads to:",
      "options": [
        "Far-sighted agent",
        "Infinite reward accumulation",
        "Short-sighted agent focusing on immediate rewards",
        "Random action selection"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low γ reduces the weight of future rewards in value estimates."
    },
    {
      "id": 45,
      "questionText": "A discount factor γ close to 1 leads to:",
      "options": [
        "Far-sighted agent valuing future rewards",
        "No learning",
        "Randomized reward",
        "Immediate reward focus"
      ],
      "correctAnswerIndex": 0,
      "explanation": "High γ makes the agent long-term focused, considering distant rewards."
    },
    {
      "id": 46,
      "questionText": "Which function guides agent behavior by evaluating future reward potential?",
      "options": [
        "Reward function only",
        "State-action mapping",
        "Value function",
        "Transition function"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Value functions estimate future reward potential, indirectly guiding actions."
    },
    {
      "id": 47,
      "questionText": "Which method combines state and action evaluation to choose optimal moves?",
      "options": [
        "TD(0) only",
        "Q-function",
        "V-function",
        "Monte Carlo only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Q(s,a) evaluates expected return for state-action pairs."
    },
    {
      "id": 48,
      "questionText": "Which term measures the quality of an action in a state?",
      "options": [
        "γ",
        "Reward shaping",
        "Q-value",
        "V-value"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q-value estimates long-term expected reward for taking a specific action."
    },
    {
      "id": 49,
      "questionText": "Value function approximation is necessary when:",
      "options": [
        "Actions are discrete",
        "State space is small",
        "Rewards are deterministic",
        "State space is too large or continuous"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Large or continuous state spaces make tabular value storage impractical."
    },
    {
      "id": 50,
      "questionText": "Which method learns policy indirectly via value estimates?",
      "options": [
        "Actor-Critic only",
        "Value-based RL",
        "Monte Carlo only",
        "Policy gradient"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Value-based methods choose actions via max(Q) without learning policy parameters directly."
    },
    {
      "id": 51,
      "questionText": "In a deterministic environment, TD(0) converges to:",
      "options": [
        "Immediate rewards only",
        "Random values",
        "True state values V(s)",
        "Policy parameters"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD(0) converges to correct V(s) if learning rate and exploration conditions are met."
    },
    {
      "id": 52,
      "questionText": "Bootstrapping can introduce bias but reduces:",
      "options": [
        "Variance in estimates",
        "Immediate rewards",
        "Policy randomness",
        "Learning rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "TD bootstrapping reduces variance at the cost of some bias."
    },
    {
      "id": 53,
      "questionText": "The max operator in Q-learning helps:",
      "options": [
        "Compute TD error only",
        "Discount rewards",
        "Randomize exploration",
        "Choose action with highest estimated return"
      ],
      "correctAnswerIndex": 3,
      "explanation": "max_a Q(s’,a) selects the action with highest expected value for next state."
    },
    {
      "id": 54,
      "questionText": "Q-learning is considered off-policy because:",
      "options": [
        "It learns optimal Q regardless of agent’s current actions",
        "It uses random rewards only",
        "It ignores state transitions",
        "It directly follows current policy"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Off-policy learning allows learning of Q* while following exploratory policy."
    },
    {
      "id": 55,
      "questionText": "Which function provides guidance for immediate action selection?",
      "options": [
        "V(s)",
        "Reward function",
        "Discount factor",
        "Q(s,a)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Q-values indicate which action in current state yields highest expected reward."
    },
    {
      "id": 56,
      "questionText": "Monte Carlo updates are unbiased but have:",
      "options": [
        "High variance",
        "Immediate convergence",
        "No error",
        "Low variance"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Monte Carlo estimates can vary widely between episodes, leading to high variance."
    },
    {
      "id": 57,
      "questionText": "Which value function is used in policy iteration to evaluate policy?",
      "options": [
        "Q*(s,a)",
        "R(s)",
        "Vπ(s)",
        "V*(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Policy evaluation uses Vπ(s) to estimate expected return under policy π."
    },
    {
      "id": 58,
      "questionText": "Temporal difference methods combine Monte Carlo ideas and:",
      "options": [
        "Policy gradients",
        "Reward clipping",
        "Bootstrapping",
        "Random exploration"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD methods use bootstrapping to estimate value based on next state’s current value."
    },
    {
      "id": 59,
      "questionText": "Sparse rewards make RL more challenging because:",
      "options": [
        "Policy gradient fails",
        "Agent receives little guidance during learning",
        "Discount factor becomes irrelevant",
        "Agent converges immediately"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Without frequent feedback, the agent struggles to learn correct action-value mapping."
    },
    {
      "id": 60,
      "questionText": "Which term describes expected future reward from a state-action pair?",
      "options": [
        "V(s)",
        "R(s)",
        "Q(s,a)",
        "γ"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q(s,a) measures cumulative expected reward starting from that action."
    },
    {
      "id": 61,
      "questionText": "Which method updates value functions continuously after every step?",
      "options": [
        "Monte Carlo",
        "Reward shaping",
        "TD learning",
        "Policy gradient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD learning updates V(s) incrementally using observed reward and next state value."
    },
    {
      "id": 62,
      "questionText": "Which value function guides long-term planning in RL?",
      "options": [
        "Policy entropy",
        "Reward only",
        "Immediate next state",
        "V(s) and Q(s,a)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "V(s) and Q(s,a) provide estimates of cumulative future reward for planning actions."
    },
    {
      "id": 63,
      "questionText": "Which is true about bootstrapped TD updates?",
      "options": [
        "They are only for deterministic environments",
        "They ignore discount factor",
        "They reduce variance compared to Monte Carlo",
        "They eliminate reward function"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Bootstrapping reduces variance but introduces bias, unlike full-episode Monte Carlo."
    },
    {
      "id": 64,
      "questionText": "Which parameter determines learning step size in TD updates?",
      "options": [
        "γ (discount factor)",
        "ε (exploration)",
        "α (learning rate)",
        "λ (trace decay)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "α controls how much each update adjusts the current value estimate."
    },
    {
      "id": 65,
      "questionText": "Which function represents optimal action-value function?",
      "options": [
        "Vπ(s)",
        "Q*(s,a)",
        "R(s)",
        "V*(s)"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Q*(s,a) gives the best achievable return for a state-action pair following optimal policy."
    },
    {
      "id": 66,
      "questionText": "Which scenario illustrates reward hacking?",
      "options": [
        "Agent stops learning",
        "Agent explores randomly",
        "Agent finds shortcut to maximize reward but violates task intention",
        "Agent follows optimal policy"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Reward hacking occurs when agent exploits unintended loopholes in reward function."
    },
    {
      "id": 67,
      "questionText": "Which function is used to derive greedy action selection?",
      "options": [
        "Q(s,a)",
        "V(s)",
        "R(s)",
        "γ"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Greedy selection picks action with maximum Q-value in current state."
    },
    {
      "id": 68,
      "questionText": "Which parameter λ in TD(λ) balances:",
      "options": [
        "Exploration vs exploitation",
        "Monte Carlo vs TD updates",
        "Immediate vs sparse reward",
        "Learning rate vs discount factor"
      ],
      "correctAnswerIndex": 1,
      "explanation": "λ mixes short-term TD updates with long-term Monte Carlo returns."
    },
    {
      "id": 69,
      "questionText": "Why are value function approximators needed in large environments?",
      "options": [
        "State space too large for tabular methods",
        "Discount factor irrelevant",
        "Policy gradients fail",
        "Rewards are deterministic"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Function approximation allows generalization when storing values for every state is impossible."
    },
    {
      "id": 70,
      "questionText": "Which function measures discrepancy between predicted and observed reward?",
      "options": [
        "γ",
        "Q-value",
        "TD error δ",
        "V(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "TD error δ = r + γV(s') − V(s) indicates prediction mismatch for updating values."
    },
    {
      "id": 71,
      "questionText": "An agent consistently receives +1 reward only at goal completion. This is an example of:",
      "options": [
        "Dense reward",
        "Negative reward",
        "Shaped reward",
        "Sparse reward"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Sparse reward occurs when feedback is only given at task completion."
    },
    {
      "id": 72,
      "questionText": "If Q(s,a) underestimates future rewards, the agent may:",
      "options": [
        "Avoid valuable actions",
        "Ignore discount factor",
        "Converge instantly",
        "Overexplore"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Underestimated Q-values mislead agent to ignore actions with high actual returns."
    },
    {
      "id": 73,
      "questionText": "In episodic tasks, value function returns are calculated until:",
      "options": [
        "First reward",
        "Episode ends",
        "Discount factor γ=0",
        "Next action"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Episodic tasks compute total return from start state until terminal state."
    },
    {
      "id": 74,
      "questionText": "Expected reward from a state following policy π is given by:",
      "options": [
        "γ",
        "Vπ(s)",
        "R(s)",
        "Q*(s,a)"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Vπ(s) = E[Σ γ^t r_t | s, π] is the formal definition."
    },
    {
      "id": 75,
      "questionText": "Q-learning update formula is:",
      "options": [
        "V(s) ← r only",
        "Policy π(s) ← π(s) + α",
        "Q(s,a) ← Q(s,a) + α[r + γ max Q(s’,a’) − Q(s,a)]",
        "TD error δ = r − V(s)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Q-learning uses max Q of next state to update current action value."
    },
    {
      "id": 76,
      "questionText": "Which factor encourages exploration in value-based methods?",
      "options": [
        "TD error δ",
        "ε-greedy policy",
        "Discount factor γ",
        "Learning rate α"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ε-greedy policy selects random actions with small probability to explore new states."
    },
    {
      "id": 77,
      "questionText": "Which method estimates Q(s,a) while following the same policy?",
      "options": [
        "Monte Carlo",
        "SARSA (on-policy)",
        "TD(λ)",
        "Q-learning (off-policy)"
      ],
      "correctAnswerIndex": 1,
      "explanation": "SARSA uses next action chosen by current policy for updates."
    },
    {
      "id": 78,
      "questionText": "Which technique combines immediate and future reward estimation in TD learning?",
      "options": [
        "Monte Carlo only",
        "Bootstrapping",
        "Random policy",
        "Greedy selection"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Bootstrapping blends observed reward with estimated next state value."
    },
    {
      "id": 79,
      "questionText": "Which value function provides the highest possible expected return?",
      "options": [
        "Immediate reward function R(s)",
        "Policy-specific Vπ(s)",
        "TD error δ",
        "Optimal value function V*(s)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "V*(s) represents maximum expected cumulative reward from state s."
    },
    {
      "id": 80,
      "questionText": "Reward shaping helps RL agent by:",
      "options": [
        "Giving intermediate rewards to guide learning",
        "Eliminating exploration entirely",
        "Forcing deterministic actions",
        "Changing discount factor"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Shaped rewards provide additional feedback to accelerate learning."
    },
    {
      "id": 81,
      "questionText": "An agent in a maze receives +10 only when it reaches the exit, 0 otherwise. Which challenge does it face?",
      "options": [
        "High variance in rewards",
        "Discount factor issues",
        "Immediate feedback overload",
        "Sparse rewards making learning slow"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The agent gets feedback only at the goal, so intermediate steps provide no reward, slowing learning."
    },
    {
      "id": 82,
      "questionText": "A delivery robot gets reward for each package delivered but penalty for hitting obstacles. How should reward shaping be applied?",
      "options": [
        "Add small negative reward for each step to encourage faster delivery",
        "Ignore obstacle penalties",
        "Increase discount factor to 1",
        "Provide reward only at end"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Adding small negative step reward incentivizes faster goal completion while maintaining obstacle penalties."
    },
    {
      "id": 83,
      "questionText": "In a stock trading simulation, the agent receives reward only when selling stock at profit. What issue arises?",
      "options": [
        "Overfitting to stock price",
        "Discount factor becomes negative",
        "Sparse delayed rewards can make learning inefficient",
        "Immediate feedback causes instability"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sparse and delayed reward makes it harder for the agent to learn which actions contributed to eventual profit."
    },
    {
      "id": 84,
      "questionText": "An agent in a gridworld receives +1 for moving closer to the goal and -1 for moving away. This is an example of:",
      "options": [
        "Shaped rewards",
        "Random rewards",
        "Sparse rewards",
        "Negative-only rewards"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reward shaping provides continuous guidance, encouraging progress toward the goal."
    },
    {
      "id": 85,
      "questionText": "In a self-driving car simulation, if the agent only receives reward at destination, what would help learning?",
      "options": [
        "Randomizing rewards",
        "Removing penalties",
        "Adding intermediate rewards for staying in lane and avoiding collisions",
        "Reducing discount factor to 0"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Intermediate rewards guide agent step-by-step, improving learning efficiency."
    },
    {
      "id": 86,
      "questionText": "A robot arm is learning to stack blocks. It receives reward only when the tower is complete. Which method helps?",
      "options": [
        "Reward shaping with intermediate points for partial stacking",
        "Increase exploration to maximum",
        "Ignore intermediate failures",
        "Reduce learning rate"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Providing partial rewards for successful sub-tasks speeds up learning in sparse reward settings."
    },
    {
      "id": 87,
      "questionText": "In a scenario where the agent must navigate a dynamic environment with moving obstacles, which approach improves value estimation?",
      "options": [
        "Monte Carlo only",
        "Ignore moving obstacles in rewards",
        "Random exploration without value update",
        "TD(λ) with bootstrapping for faster updates"
      ],
      "correctAnswerIndex": 3,
      "explanation": "TD(λ) allows combining short-term and long-term rewards for more efficient learning in dynamic environments."
    },
    {
      "id": 88,
      "questionText": "A drone receives small negative reward for battery usage and positive reward for reaching checkpoints. What does this reward structure achieve?",
      "options": [
        "Balances energy consumption and goal achievement",
        "Only optimizes immediate reward",
        "Encourages ignoring battery constraints",
        "Maximizes random exploration"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The reward function encourages completing goals efficiently while minimizing energy use."
    },
    {
      "id": 89,
      "questionText": "In a game, an agent finds a loophole to repeatedly collect small rewards instead of completing main quest. This is called:",
      "options": [
        "Reward hacking",
        "TD error",
        "Sparse reward",
        "Bootstrapping"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Reward hacking occurs when the agent exploits unintended reward sources instead of completing intended tasks."
    },
    {
      "id": 90,
      "questionText": "An agent trained with high discount factor γ in a long-horizon task may:",
      "options": [
        "Fail to explore",
        "Focus on long-term rewards, sometimes ignoring immediate gains",
        "Focus only on immediate reward",
        "Ignore reward function"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High γ emphasizes future rewards, making the agent prioritize long-term outcomes."
    },
    {
      "id": 91,
      "questionText": "In a simulation where an agent has multiple goals with different rewards, what is crucial for learning correct value estimates?",
      "options": [
        "Properly scaling rewards to reflect relative importance",
        "Randomizing reward signals",
        "Ignoring discount factor",
        "Using immediate reward only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Scaling rewards ensures that high-priority goals dominate learning without distorting overall behavior."
    },
    {
      "id": 92,
      "questionText": "If an agent receives stochastic rewards from the same action, value estimation must account for:",
      "options": [
        "Ignoring stochasticity",
        "Expected value and variance",
        "TD error δ=0",
        "Immediate reward only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Stochastic rewards require estimating expected return and possibly managing variance to stabilize learning."
    },
    {
      "id": 93,
      "questionText": "In multi-step tasks, an agent that overestimates future rewards may:",
      "options": [
        "Choose risky actions expecting high payoff",
        "Always follow short-term reward",
        "Ignore environment",
        "Fail to update value functions"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Overestimation in Q-values can lead to overly optimistic and risky behavior."
    },
    {
      "id": 94,
      "questionText": "Which method helps reduce high variance in Monte Carlo returns for episodic tasks?",
      "options": [
        "Sparse reward only",
        "TD bootstrapping",
        "Increase learning rate",
        "Ignore intermediate rewards"
      ],
      "correctAnswerIndex": 1,
      "explanation": "TD bootstrapping uses estimates from next state, reducing variance compared to full-episode returns."
    },
    {
      "id": 95,
      "questionText": "A self-learning agent plays a competitive game. It wins small points frequently but big points only on rare strategies. How should rewards be structured?",
      "options": [
        "Give only big rewards at game end",
        "Randomize reward assignment",
        "Remove small rewards entirely",
        "Balance frequent small rewards and rare big rewards to guide strategy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Balanced reward shaping ensures agent explores both common and rare valuable strategies."
    },
    {
      "id": 96,
      "questionText": "Agent operates in continuous state space where exact Q-values cannot be stored. Which approach is needed?",
      "options": [
        "Monte Carlo with tables",
        "Tabular Q-learning",
        "Function approximation (e.g., neural networks)",
        "Ignore approximation and use TD only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Continuous spaces require approximating value functions to generalize across states."
    },
    {
      "id": 97,
      "questionText": "During training, the agent finds a shortcut to maximize reward but violates intended task. To fix this:",
      "options": [
        "Redesign reward function to reflect intended goals",
        "Reduce discount factor to 0",
        "Increase exploration only",
        "Remove all negative rewards"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Proper reward design prevents reward hacking and aligns learning with intended objectives."
    },
    {
      "id": 98,
      "questionText": "An agent receives conflicting rewards for two simultaneous objectives. How should value estimates be handled?",
      "options": [
        "Use weighted combination of rewards for single value estimate",
        "Ignore one objective",
        "Use random selection",
        "Reduce discount factor to 0"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Weighted sum ensures both objectives influence learning appropriately."
    },
    {
      "id": 99,
      "questionText": "In a delayed reward task, which technique accelerates learning?",
      "options": [
        "Reward shaping with intermediate milestones",
        "Reducing learning rate",
        "Ignoring discount factor",
        "Random action selection only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Providing intermediate rewards guides agent through long sequences to the final goal."
    },
    {
      "id": 100,
      "questionText": "A reinforcement learning agent in an environment with stochastic transitions and rewards can improve value estimation using:",
      "options": [
        "TD learning with averaging or function approximation",
        "Immediate reward only",
        "Ignoring stochasticity",
        "Random actions without learning"
      ],
      "correctAnswerIndex": 0,
      "explanation": "TD methods combined with averaging or function approximation help stabilize learning in stochastic environments."
    }
  ]
}