File size: 46,442 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Linear Discriminant Analysis Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions to test and deepen your understanding of Linear Discriminant Analysis (LDA), covering fundamental concepts, assumptions, discriminant functions, and applications in classification tasks.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the primary goal of Linear Discriminant Analysis (LDA)?",
      "options": [
        "To cluster unlabeled data",
        "To find correlations between variables",
        "To reduce the dimensionality of a dataset while retaining most variance",
        "To fit a regression line"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA aims to reduce dimensionality and maximize separability between known classes by projecting data onto a lower-dimensional space."
    },
    {
      "id": 2,
      "questionText": "LDA assumes that the data in each class:",
      "options": [
        "Has equal number of samples per class",
        "Follows a Gaussian (normal) distribution",
        "Has no correlation between features",
        "Is uniformly distributed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LDA assumes normally distributed features for each class, which allows it to compute class-specific mean and covariance matrices for optimal separation."
    },
    {
      "id": 3,
      "questionText": "In LDA, the discriminant function is used to:",
      "options": [
        "Normalize the data",
        "Compute the correlation between features",
        "Reduce the number of features",
        "Assign a class label to a sample"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Discriminant functions are computed for each class, and a sample is assigned to the class with the highest score."
    },
    {
      "id": 4,
      "questionText": "Scenario: You have two classes in 3D space. LDA reduces the data to 1D. Why?",
      "options": [
        "Because LDA always reduces to 1D",
        "To normalize the data",
        "To eliminate one feature randomly",
        "Because maximum class separability can be achieved in a line"
      ],
      "correctAnswerIndex": 3,
      "explanation": "LDA projects the data to a subspace that maximizes the ratio of between-class variance to within-class variance. For two classes, a 1D projection suffices."
    },
    {
      "id": 5,
      "questionText": "LDA works best when classes:",
      "options": [
        "Have distinct means and similar covariance matrices",
        "Are highly skewed",
        "Have identical data points",
        "Are non-Gaussian"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA assumes Gaussian distributions with equal covariances; distinct means allow for better class separation."
    },
    {
      "id": 6,
      "questionText": "Scenario: Two features are highly correlated. What is a likely effect on LDA?",
      "options": [
        "May cause redundancy but LDA can still compute projection",
        "Algorithm fails",
        "Produces random results",
        "Features will be removed automatically"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Highly correlated features can reduce LDA effectiveness slightly but the algorithm can still compute the optimal projection."
    },
    {
      "id": 7,
      "questionText": "The number of linear discriminants in LDA is at most:",
      "options": [
        "Number of samples",
        "Number of features minus one",
        "Number of features",
        "Number of classes minus one"
      ],
      "correctAnswerIndex": 3,
      "explanation": "For c classes, LDA can produce at most c−1 discriminant axes."
    },
    {
      "id": 8,
      "questionText": "Scenario: LDA projection separates classes poorly. Possible reason?",
      "options": [
        "Output dimension is 1D",
        "Too many features",
        "Classes have overlapping distributions or unequal covariances",
        "Data is normalized"
      ],
      "correctAnswerIndex": 2,
      "explanation": "If the assumptions of Gaussian distribution with equal covariance are violated, class separation by LDA can be poor."
    },
    {
      "id": 9,
      "questionText": "LDA is commonly used for:",
      "options": [
        "Classification tasks",
        "Clustering",
        "Regression tasks",
        "Time series forecasting"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA is primarily a classification algorithm, although it can also be used for dimensionality reduction."
    },
    {
      "id": 10,
      "questionText": "Scenario: You have 3 classes and 5 features. Maximum LDA dimensions?",
      "options": [
        "5",
        "2",
        "3",
        "1"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Maximum number of linear discriminants is c−1 = 3−1 = 2."
    },
    {
      "id": 11,
      "questionText": "LDA computes projections by maximizing:",
      "options": [
        "Sum of all variances",
        "Mean of features",
        "Ratio of between-class variance to within-class variance",
        "Correlation coefficient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The objective of LDA is to find a projection that increases class separability, which is measured by the ratio of between-class to within-class variance."
    },
    {
      "id": 12,
      "questionText": "Scenario: You have highly overlapping classes. LDA output may be:",
      "options": [
        "Perfect classification",
        "Normalized projections",
        "Poor classification",
        "Automatic clustering"
      ],
      "correctAnswerIndex": 2,
      "explanation": "When class distributions overlap significantly, LDA cannot separate them well, resulting in misclassification."
    },
    {
      "id": 13,
      "questionText": "Which of these is an assumption of LDA?",
      "options": [
        "Features are normally distributed per class",
        "Data has missing values",
        "Classes have different covariance matrices",
        "Data is categorical only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA assumes Gaussian features for each class to compute the optimal linear projection."
    },
    {
      "id": 14,
      "questionText": "Scenario: Two features have vastly different scales. What to do before LDA?",
      "options": [
        "Use log transform only",
        "Leave them as is",
        "Standardize or normalize features",
        "Remove the smaller scale feature"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Scaling ensures that features contribute equally to the discriminant function."
    },
    {
      "id": 15,
      "questionText": "LDA vs PCA: key difference?",
      "options": [
        "Both are unsupervised",
        "LDA reduces features; PCA increases features",
        "Both require class labels",
        "LDA is supervised; PCA is unsupervised"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA ignores class labels and maximizes variance; LDA uses class labels to maximize separability."
    },
    {
      "id": 16,
      "questionText": "Scenario: You have two classes with very different variances. How does it affect LDA?",
      "options": [
        "May reduce classification performance since LDA assumes equal covariance",
        "Automatically scales variances",
        "Classes will merge",
        "Does not affect LDA"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA assumes equal covariance matrices for classes; large differences can reduce separability and classification accuracy."
    },
    {
      "id": 17,
      "questionText": "LDA projects data onto a lower-dimensional space using:",
      "options": [
        "Linear combinations of original features",
        "Polynomial transformations",
        "Kernel functions only",
        "Random feature selection"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA computes linear combinations of features to maximize class separability."
    },
    {
      "id": 18,
      "questionText": "Scenario: After applying LDA, one feature dominates the discriminant. Likely reason?",
      "options": [
        "Feature is categorical",
        "Feature has much larger variance than others",
        "Random initialization",
        "Algorithm error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Features with larger variance can dominate projections if data is not scaled."
    },
    {
      "id": 19,
      "questionText": "Number of discriminant axes depends on:",
      "options": [
        "Number of samples",
        "Number of features minus one",
        "Number of zero-variance features",
        "Number of classes minus one"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Maximum number of discriminants is c−1 for c classes."
    },
    {
      "id": 20,
      "questionText": "Scenario: You have three classes with very similar means. LDA may:",
      "options": [
        "Perfectly separate classes",
        "Remove features automatically",
        "Struggle to separate classes",
        "Convert data to 1D"
      ],
      "correctAnswerIndex": 2,
      "explanation": "When class means are very close, LDA finds it difficult to achieve good separability."
    },
    {
      "id": 21,
      "questionText": "In LDA, 'within-class scatter matrix' represents:",
      "options": [
        "Mean differences between classes",
        "Variability of samples within each class",
        "Distance to origin",
        "Covariance of features across all samples"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Within-class scatter measures how data points of the same class vary around their mean."
    },
    {
      "id": 22,
      "questionText": "In LDA, 'between-class scatter matrix' represents:",
      "options": [
        "Within-class variance",
        "Random noise",
        "Sum of all features",
        "Variability of class means relative to overall mean"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Between-class scatter captures how distinct the class centers are from the global mean."
    },
    {
      "id": 23,
      "questionText": "Scenario: You want to classify 4 classes. Maximum LDA dimensions?",
      "options": [
        "4",
        "1",
        "3",
        "5"
      ],
      "correctAnswerIndex": 2,
      "explanation": "For c classes, maximum discriminant axes = c−1 = 4−1 = 3."
    },
    {
      "id": 24,
      "questionText": "LDA vs QDA: main difference?",
      "options": [
        "LDA allows nonlinear separation; QDA is linear",
        "Both are unsupervised",
        "QDA allows different covariance matrices per class; LDA assumes equal",
        "QDA uses PCA internally"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA assumes equal covariance matrices; QDA allows class-specific covariances for more flexible separation."
    },
    {
      "id": 25,
      "questionText": "Scenario: You have 100 features and 3 classes. LDA may:",
      "options": [
        "Reduce data to at most 2 dimensions",
        "Fail if features exceed 50",
        "Increase dimensionality",
        "Remove random features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Number of LDA axes = c−1 = 2, regardless of the number of features."
    },
    {
      "id": 26,
      "questionText": "Scenario: LDA applied to two classes with equal means. Expected outcome?",
      "options": [
        "Cannot separate classes",
        "Data transformed to zero",
        "Perfect separation",
        "Automatic feature selection"
      ],
      "correctAnswerIndex": 0,
      "explanation": "If class means are identical, LDA has no discriminative power to separate them."
    },
    {
      "id": 27,
      "questionText": "LDA projection maximizes:",
      "options": [
        "Sum of variances",
        "Correlation of features",
        "Between-class variance / within-class variance",
        "Eigenvectors only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA selects projections that maximize separability measured by the ratio of between-class to within-class variance."
    },
    {
      "id": 28,
      "questionText": "Scenario: LDA applied to skewed data. Suggested preprocessing?",
      "options": [
        "Use raw data",
        "Normalize or transform data to approximate Gaussian",
        "Reduce classes to 2",
        "Remove features randomly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LDA assumes Gaussian features; transforming skewed data helps satisfy assumptions."
    },
    {
      "id": 29,
      "questionText": "LDA is mainly classified as:",
      "options": [
        "Regression algorithm",
        "Reinforcement learning",
        "Supervised dimensionality reduction",
        "Unsupervised clustering"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA uses class labels to reduce dimensions while preserving class separability."
    },
    {
      "id": 30,
      "questionText": "Scenario: After LDA projection, some data points are misclassified. Likely reason?",
      "options": [
        "Output dimension too high",
        "Overlapping distributions or violated assumptions",
        "Algorithm failure",
        "Features removed automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Misclassification occurs when class distributions overlap or LDA assumptions (normality, equal covariance) are violated."
    },
    {
      "id": 31,
      "questionText": "Scenario: You have 3 classes of flowers with 4 features each. Before applying LDA, why is standardization important?",
      "options": [
        "To ensure all features contribute equally to the discriminant function",
        "To increase between-class variance",
        "To reduce the number of classes automatically",
        "To make LDA nonlinear"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standardizing features ensures that features with larger scales do not dominate the linear discriminant function."
    },
    {
      "id": 32,
      "questionText": "Scenario: You want to reduce 10-dimensional data to 2D using LDA for 3 classes. Maximum dimensions achievable?",
      "options": [
        "1",
        "10",
        "2",
        "3"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Maximum LDA dimensions = c−1 = 3−1 = 2."
    },
    {
      "id": 33,
      "questionText": "Scenario: Two classes with similar means but different covariances. LDA may:",
      "options": [
        "Reduce dimensionality to 1D",
        "Perfectly separate them",
        "Fail to separate classes effectively",
        "Automatically detect clusters"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA assumes equal covariances; different covariances violate this assumption and may reduce separation."
    },
    {
      "id": 34,
      "questionText": "Which matrix in LDA captures variance within each class?",
      "options": [
        "Between-class scatter matrix",
        "Within-class scatter matrix",
        "Covariance of all features",
        "Correlation matrix"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Within-class scatter matrix measures how samples vary within their respective classes."
    },
    {
      "id": 35,
      "questionText": "Scenario: You applied LDA and classes still overlap. Possible remedies?",
      "options": [
        "Reduce output dimension to 1",
        "Check for assumptions violations, consider QDA or kernel LDA",
        "Ignore overlapping points",
        "Remove classes randomly"
      ],
      "correctAnswerIndex": 1,
      "explanation": "If assumptions are violated, alternatives like QDA or kernel LDA can handle unequal covariances or nonlinear separation."
    },
    {
      "id": 36,
      "questionText": "Scenario: LDA applied to customer data with categorical features. How to proceed?",
      "options": [
        "Ignore categorical features",
        "Reduce classes to 2 only",
        "Use raw text",
        "Encode categorical features numerically before applying LDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Categorical variables must be numerically encoded to be included in LDA."
    },
    {
      "id": 37,
      "questionText": "LDA maximizes the ratio of:",
      "options": [
        "Eigenvalue magnitude",
        "Between-class variance to within-class variance",
        "Correlation of features",
        "Within-class variance to total variance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "This ratio ensures optimal class separability in the projected space."
    },
    {
      "id": 38,
      "questionText": "Scenario: LDA projection of 4-class dataset onto 3D space. Number of axes used?",
      "options": [
        "4",
        "2",
        "1",
        "3"
      ],
      "correctAnswerIndex": 3,
      "explanation": "For c classes, maximum LDA axes = c−1 = 4−1 = 3."
    },
    {
      "id": 39,
      "questionText": "Scenario: You observe one feature dominates LDA axis. Solution?",
      "options": [
        "Remove other features",
        "Standardize features",
        "Increase number of classes",
        "Reduce output dimension"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standardization ensures all features contribute equally to discriminant axes."
    },
    {
      "id": 40,
      "questionText": "Scenario: After LDA, misclassification occurs. Likely causes?",
      "options": [
        "Overlapping classes, unequal covariances, or noisy data",
        "LDA failure",
        "Too few features",
        "Too many classes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Violation of LDA assumptions or overlapping class distributions can cause misclassification."
    },
    {
      "id": 41,
      "questionText": "Scenario: You want to visualize class separation after LDA. Suggested output dimensions?",
      "options": [
        "At most c−1 dimensions",
        "Number of samples",
        "Equal to number of features",
        "1D only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA can produce at most c−1 discriminant axes for c classes, suitable for visualization."
    },
    {
      "id": 42,
      "questionText": "Scenario: LDA is applied to a dataset with overlapping covariances. What is recommended?",
      "options": [
        "Consider QDA or kernel LDA for nonlinear separation",
        "Reduce dataset size",
        "Ignore overlapping samples",
        "Use PCA instead"
      ],
      "correctAnswerIndex": 0,
      "explanation": "QDA allows different class covariances and kernel LDA can handle nonlinear separability."
    },
    {
      "id": 43,
      "questionText": "Scenario: Dataset has 1000 features and 4 classes. How many LDA axes?",
      "options": [
        "1000",
        "2",
        "3",
        "4"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Maximum axes = c−1 = 4−1 = 3, independent of feature count."
    },
    {
      "id": 44,
      "questionText": "Scenario: You want LDA for classification on skewed data. Recommended preprocessing?",
      "options": [
        "Use raw skewed data",
        "Remove skewed features",
        "Normalize or transform data to approximate Gaussian",
        "Reduce number of classes"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA assumes Gaussian distributions; transformation improves performance."
    },
    {
      "id": 45,
      "questionText": "Scenario: You have missing values in features. LDA requires:",
      "options": [
        "Leave them as NaN",
        "Ignore affected samples in testing only",
        "Random replacement with 0",
        "Imputation or removal before applying LDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Missing values must be handled because LDA computations require complete data."
    },
    {
      "id": 46,
      "questionText": "Scenario: LDA applied to two classes with equal means. Projection result?",
      "options": [
        "Perfect separation",
        "No separation possible",
        "Random projection",
        "Automatic clustering"
      ],
      "correctAnswerIndex": 1,
      "explanation": "If class means are identical, discriminant axis cannot separate classes."
    },
    {
      "id": 47,
      "questionText": "Scenario: High-dimensional data with many features but few samples. Risk in LDA?",
      "options": [
        "Singular scatter matrices and overfitting",
        "Perfect separation",
        "Automatic feature removal",
        "No impact"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Few samples relative to features can make within-class scatter matrix singular, causing numerical issues."
    },
    {
      "id": 48,
      "questionText": "Scenario: You want nonlinear class separation. Standard LDA may:",
      "options": [
        "Work perfectly",
        "Fail to separate classes; consider kernel LDA",
        "Reduce output dimension to 1D",
        "Automatically create new features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Standard LDA is linear; kernel LDA extends it for nonlinear boundaries."
    },
    {
      "id": 49,
      "questionText": "Scenario: Two features are highly correlated. LDA may:",
      "options": [
        "Merge features automatically",
        "Fail completely",
        "Ignore one feature",
        "Produce redundant axes but still work"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Highly correlated features may not add new information, but LDA can still compute discriminants."
    },
    {
      "id": 50,
      "questionText": "Scenario: You apply LDA and notice one class dominates projections. Likely cause?",
      "options": [
        "Class imbalance in sample sizes",
        "Output dimension too high",
        "Too few classes",
        "Too many features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA assumes equal class priors; imbalance can bias the projection toward larger classes."
    },
    {
      "id": 51,
      "questionText": "Scenario: You have 5 classes, LDA reduces data to 4D. You want to visualize in 2D. Recommended approach?",
      "options": [
        "Reduce classes to 2",
        "Use PCA instead of LDA",
        "Select first two discriminant axes",
        "Randomly select features"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Selecting the top discriminant axes allows visualization while preserving maximum class separability."
    },
    {
      "id": 52,
      "questionText": "Scenario: Features have different units (e.g., meters and kilograms). LDA requires:",
      "options": [
        "Remove large-unit features",
        "Convert all features to meters",
        "Leave features as is",
        "Standardization to make features comparable"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Standardization ensures all features contribute proportionally to discriminant functions."
    },
    {
      "id": 53,
      "questionText": "Scenario: LDA misclassifies samples near class boundaries. Likely reason?",
      "options": [
        "Overlap in class distributions",
        "Output dimension too high",
        "Too few features",
        "Algorithm failure"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA cannot perfectly classify points in overlapping regions."
    },
    {
      "id": 54,
      "questionText": "Scenario: LDA applied to a dataset with nonlinear boundaries. Best alternative?",
      "options": [
        "QDA",
        "Kernel LDA",
        "PCA",
        "Standard LDA"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Kernel LDA handles nonlinear separations by mapping data to higher-dimensional space."
    },
    {
      "id": 55,
      "questionText": "Scenario: You want to classify emails as spam or not. Why LDA may be suitable?",
      "options": [
        "It ignores class labels",
        "It clusters data automatically",
        "It reduces dimensionality and maximizes separation of two known classes",
        "It predicts numeric values"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA is supervised and can be used for two-class classification while reducing dimensionality."
    },
    {
      "id": 56,
      "questionText": "Scenario: You have two classes with different priors. How to handle in LDA?",
      "options": [
        "Use class priors in discriminant function",
        "Standardize features only",
        "Ignore class priors",
        "Reduce number of classes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Incorporating class priors prevents bias toward larger classes."
    },
    {
      "id": 57,
      "questionText": "Scenario: LDA applied after PCA pre-reduction. Advantage?",
      "options": [
        "Randomly removes features",
        "Automatically adds classes",
        "Reduces noise and computational cost while preserving discriminative features",
        "Increases variance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA pre-reduction simplifies LDA computations and can improve stability on high-dimensional data."
    },
    {
      "id": 58,
      "questionText": "Scenario: LDA misclassifies samples at class edges. Likely cause?",
      "options": [
        "Output dimension too low",
        "Too many features",
        "Algorithm error",
        "Overlap in distributions or violation of assumptions"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Misclassification occurs where distributions overlap or assumptions are violated."
    },
    {
      "id": 59,
      "questionText": "Scenario: LDA applied to gene expression data with thousands of features. Recommended step?",
      "options": [
        "Use raw data directly",
        "Reduce classes to 2",
        "Remove high-expression genes only",
        "Dimensionality reduction with PCA before LDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "PCA reduces high-dimensional noise and makes LDA computation feasible."
    },
    {
      "id": 60,
      "questionText": "Scenario: LDA projections differ between runs. Likely cause?",
      "options": [
        "Random initialization in eigen decomposition",
        "Features not scaled",
        "Algorithm failure",
        "Too few classes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Random numerical processes in LDA can lead to slightly different projections across runs."
    },
    {
      "id": 61,
      "questionText": "Scenario: Two features perfectly correlated. LDA result?",
      "options": [
        "Cannot compute projection",
        "Redundant axis; still works",
        "Algorithm fails",
        "Removes one feature automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Perfect correlation introduces redundancy but LDA can still compute the discriminant axis."
    },
    {
      "id": 62,
      "questionText": "Scenario: Class distributions are heavily skewed. LDA assumption?",
      "options": [
        "Automatic transformation occurs",
        "Skewed data improves separation",
        "LDA ignores distribution",
        "Assumes Gaussian distributions; skewness can reduce accuracy"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Skewed distributions violate the Gaussian assumption, potentially reducing LDA effectiveness."
    },
    {
      "id": 63,
      "questionText": "Scenario: LDA output used for visualization. How to select axes?",
      "options": [
        "Top discriminant axes based on eigenvalues",
        "All features",
        "First features only",
        "Random axes"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Eigenvalues indicate discriminative power; top axes preserve maximum class separation."
    },
    {
      "id": 64,
      "questionText": "Scenario: LDA applied on imbalanced dataset. How to improve performance?",
      "options": [
        "Remove smaller classes",
        "Ignore imbalance",
        "Use class priors or resample data",
        "Reduce output dimensions"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Incorporating priors or balancing data prevents bias toward larger classes."
    },
    {
      "id": 65,
      "questionText": "Scenario: LDA applied to text data (TF-IDF vectors). Recommended preprocessing?",
      "options": [
        "Use raw counts without scaling",
        "Remove class labels",
        "Feature scaling or normalization",
        "Randomly select words"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Scaling ensures different term frequencies contribute proportionally to discriminant function."
    },
    {
      "id": 66,
      "questionText": "Scenario: LDA for multi-class image classification. Which is true?",
      "options": [
        "LDA increases feature dimensions",
        "Maximum axes = c−1; use top axes for visualization or classifier",
        "Automatically converts to binary classes",
        "Does not require labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LDA produces at most c−1 axes; top axes can be used for classification or visualization."
    },
    {
      "id": 67,
      "questionText": "Scenario: After LDA, two classes overlap. Which action helps?",
      "options": [
        "Reduce output dimensions",
        "Check assumptions, consider kernel LDA or QDA",
        "Remove overlapping points",
        "Use PCA only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Violations of LDA assumptions may require alternative methods like kernel LDA or QDA."
    },
    {
      "id": 68,
      "questionText": "Scenario: LDA applied to numeric data only. Why?",
      "options": [
        "Categorical data works directly",
        "Algorithm ignores numeric values",
        "LDA requires numeric input for linear combination computation",
        "LDA converts numeric to categorical automatically"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Linear combinations require numeric values; categorical features must be encoded numerically."
    },
    {
      "id": 69,
      "questionText": "Scenario: LDA applied to overlapping classes. Performance metric?",
      "options": [
        "Scatter plot only",
        "Variance only",
        "Eigenvalues only",
        "Classification accuracy, confusion matrix, or F1-score"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Use standard classification metrics to evaluate LDA performance on overlapping classes."
    },
    {
      "id": 70,
      "questionText": "Scenario: LDA applied on high-dimensional dataset with noisy features. Suggested approach?",
      "options": [
        "Increase output dimensions",
        "Apply PCA before LDA to reduce noise and dimensionality",
        "Use raw data directly",
        "Remove labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA helps reduce noise and computational complexity before applying LDA on high-dimensional data."
    },
    {
      "id": 71,
      "questionText": "Scenario: You apply LDA on a dataset with 5 classes, but class 4 has only 2 samples. Likely issue?",
      "options": [
        "Within-class scatter matrix may become singular, causing numerical instability",
        "LDA perfectly separates all classes",
        "Algorithm will automatically remove the class",
        "No impact since LDA ignores class size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Very few samples in a class can make the within-class scatter matrix singular, leading to computation problems."
    },
    {
      "id": 72,
      "questionText": "Scenario: After LDA, two classes are misclassified even though they have distinct means. Possible reason?",
      "options": [
        "Algorithm failed randomly",
        "Too many features",
        "Overlap in covariance structure violates LDA assumptions",
        "Output dimensions too high"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Distinct means alone do not guarantee separation; LDA assumes equal covariance matrices across classes."
    },
    {
      "id": 73,
      "questionText": "Scenario: You want to classify high-dimensional gene expression data with 3 classes. LDA fails. Recommended approach?",
      "options": [
        "Use LDA directly without preprocessing",
        "Reduce the number of classes to 2",
        "Apply PCA first to reduce dimensionality, then LDA",
        "Remove high-variance genes only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "High-dimensional data can lead to singular matrices; PCA reduces dimensionality and noise, stabilizing LDA."
    },
    {
      "id": 74,
      "questionText": "Scenario: Two classes with similar means but different covariance. LDA vs QDA?",
      "options": [
        "LDA is better since it assumes equal covariance",
        "Both perform equally",
        "QDA will perform better as it allows class-specific covariances",
        "Neither works"
      ],
      "correctAnswerIndex": 2,
      "explanation": "QDA handles unequal covariances, whereas LDA assumes equality, which may cause misclassification."
    },
    {
      "id": 75,
      "questionText": "Scenario: You apply LDA to image data and notice one axis dominates classification. Likely cause?",
      "options": [
        "Feature variance imbalance; need normalization",
        "Too many classes",
        "Algorithm failure",
        "Output dimension too low"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Features with larger variance dominate projections if data is not scaled."
    },
    {
      "id": 76,
      "questionText": "Scenario: Applying LDA to text classification with sparse TF-IDF features. Recommended preprocessing?",
      "options": [
        "Dimensionality reduction (PCA or SVD) before LDA",
        "Use raw sparse data",
        "Remove class labels",
        "Randomly sample features"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Sparse high-dimensional data can cause numerical instability; PCA or SVD reduces dimensions before LDA."
    },
    {
      "id": 77,
      "questionText": "Scenario: After LDA, some minority class samples are misclassified. How to improve?",
      "options": [
        "Ignore minority class",
        "Increase output dimensions",
        "Use class priors or resampling techniques",
        "Randomly merge classes"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Incorporating class priors or oversampling minority class balances the discriminant function."
    },
    {
      "id": 78,
      "questionText": "Scenario: Two classes perfectly linearly separable. How does LDA behave?",
      "options": [
        "Cannot compute scatter matrices",
        "Fails since overlap is zero",
        "Finds the optimal linear projection maximizing separation",
        "Randomly assigns projections"
      ],
      "correctAnswerIndex": 2,
      "explanation": "LDA works best when linear separation exists; it identifies a projection that maximizes separation."
    },
    {
      "id": 79,
      "questionText": "Scenario: You have four classes and high feature correlation. LDA produces redundant axes. Solution?",
      "options": [
        "Use raw features",
        "Apply PCA before LDA to remove redundancy",
        "Randomly remove features",
        "Reduce number of classes"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA can decorrelate features, reducing redundancy and improving LDA projections."
    },
    {
      "id": 80,
      "questionText": "Scenario: LDA applied to dataset with skewed distributions. Result?",
      "options": [
        "Reduced accuracy due to violated Gaussian assumption",
        "Perfect classification",
        "Automatic feature scaling",
        "Increased dimensionality"
      ],
      "correctAnswerIndex": 0,
      "explanation": "LDA assumes normal distribution; skewness violates this, affecting performance."
    },
    {
      "id": 81,
      "questionText": "Scenario: LDA applied to two classes, but one feature is categorical with three levels. How to proceed?",
      "options": [
        "Use raw categorical values",
        "Ignore the categorical feature",
        "Encode categorical feature numerically before LDA",
        "Remove class labels"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Categorical features must be numerically encoded to compute linear combinations in LDA."
    },
    {
      "id": 82,
      "questionText": "Scenario: Applying LDA to imbalanced dataset causes bias toward majority class. Fix?",
      "options": [
        "Increase output dimensions",
        "Reduce features",
        "Use class priors or resample minority classes",
        "Ignore imbalance"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Adjusting priors or balancing data prevents biased projections."
    },
    {
      "id": 83,
      "questionText": "Scenario: You want nonlinear boundaries between classes. Standard LDA?",
      "options": [
        "Fails; consider kernel LDA or QDA",
        "Reduces dimensions automatically",
        "Performs perfectly",
        "Removes overlapping points"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Standard LDA is linear; kernel LDA extends it to nonlinear separations."
    },
    {
      "id": 84,
      "questionText": "Scenario: After LDA, eigenvalues of some discriminant axes are near zero. Interpretation?",
      "options": [
        "Remove features randomly",
        "Axis contributes little to class separation",
        "Algorithm failure",
        "Data has missing values"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low eigenvalue axes have low discriminative power and may be ignored."
    },
    {
      "id": 85,
      "questionText": "Scenario: You have 10 classes and 1000 features. LDA reduces to 9D. You want 2D visualization. How?",
      "options": [
        "Randomly select 2 axes",
        "Use PCA only",
        "Reduce classes to 2",
        "Select top 2 discriminant axes based on eigenvalues"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Top eigenvalue axes preserve maximum class separation in reduced dimensions."
    },
    {
      "id": 86,
      "questionText": "Scenario: LDA misclassifies boundary samples consistently. Cause?",
      "options": [
        "Output dimension too high",
        "Too many features",
        "Overlap in class distributions",
        "Algorithm error"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Misclassification occurs where class distributions overlap."
    },
    {
      "id": 87,
      "questionText": "Scenario: High-dimensional LDA suffers from singular within-class scatter matrix. Solution?",
      "options": [
        "Increase sample size only",
        "Apply PCA or regularization before LDA",
        "Remove features randomly",
        "Reduce number of classes"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Dimensionality reduction or regularization stabilizes matrix inversion."
    },
    {
      "id": 88,
      "questionText": "Scenario: After LDA, two classes overlap in projection. Next step?",
      "options": [
        "Ignore problem",
        "Increase output dimension",
        "Remove overlapping points",
        "Check assumptions, consider kernel LDA or QDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Alternative methods handle unequal covariance or nonlinear separability."
    },
    {
      "id": 89,
      "questionText": "Scenario: LDA applied to numeric and binary features. Action?",
      "options": [
        "Remove numeric features",
        "Apply PCA only",
        "Ignore binary features",
        "Standardize numeric features, encode binary features numerically"
      ],
      "correctAnswerIndex": 3,
      "explanation": "All features must be numeric to compute linear discriminant functions."
    },
    {
      "id": 90,
      "questionText": "Scenario: LDA applied to a 3-class dataset. Number of discriminant axes?",
      "options": [
        "Depends on features",
        "3",
        "2",
        "1"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Maximum axes = c−1 = 3−1 = 2."
    },
    {
      "id": 91,
      "questionText": "Scenario: LDA applied with noisy features. Best practice?",
      "options": [
        "Use raw features",
        "Remove minority classes",
        "Increase output dimension",
        "Apply PCA or feature selection before LDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Reducing noise and dimensionality improves LDA stability."
    },
    {
      "id": 92,
      "questionText": "Scenario: Two classes with identical covariances and means. LDA outcome?",
      "options": [
        "Perfect separation",
        "Cannot separate classes",
        "Random projections",
        "Removes features automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "No difference in mean or covariance means LDA has no discriminative power."
    },
    {
      "id": 93,
      "questionText": "Scenario: LDA applied on imbalanced dataset with rare class. How to handle?",
      "options": [
        "Ignore imbalance",
        "Remove majority class",
        "Reduce number of classes",
        "Use class priors or oversample rare class"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Balancing class sizes prevents biased discriminant functions."
    },
    {
      "id": 94,
      "questionText": "Scenario: After LDA, projections of classes are not aligned with original features. Why?",
      "options": [
        "Normalization failed",
        "Discriminant axes are linear combinations, not original features",
        "Algorithm error",
        "Random initialization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "LDA axes are combinations of features to maximize separability."
    },
    {
      "id": 95,
      "questionText": "Scenario: LDA applied to high-dimensional text dataset. Why PCA first?",
      "options": [
        "Convert text to binary",
        "Remove labels",
        "Increase class separation automatically",
        "Reduce noise and dimensionality, improve numerical stability"
      ],
      "correctAnswerIndex": 3,
      "explanation": "High-dimensional sparse data can cause singular matrices; PCA helps."
    },
    {
      "id": 96,
      "questionText": "Scenario: LDA applied to two classes with unequal priors. How to proceed?",
      "options": [
        "Ignore priors",
        "Remove minority class",
        "Reduce output dimensions",
        "Incorporate priors in discriminant function"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Incorporating priors prevents bias toward larger class."
    },
    {
      "id": 97,
      "questionText": "Scenario: You want to visualize 5-class dataset in 2D using LDA. Max axes?",
      "options": [
        "4 axes; select top 2 for visualization",
        "Depends on features",
        "5 axes",
        "2 axes only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Maximum axes = c−1 = 5−1 = 4; top 2 axes can be used for visualization."
    },
    {
      "id": 98,
      "questionText": "Scenario: LDA misclassifies samples near overlapping region. Best evaluation metric?",
      "options": [
        "Eigenvalue magnitude",
        "Scatter plot",
        "Variance only",
        "Confusion matrix, precision, recall, or F1-score"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Classification metrics are needed to evaluate performance on overlapping regions."
    },
    {
      "id": 99,
      "questionText": "Scenario: LDA applied on dataset with outliers. Recommended step?",
      "options": [
        "Ignore outliers",
        "Increase number of classes",
        "Reduce output dimensions",
        "Detect and remove or transform outliers before LDA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Outliers can distort mean and covariance, affecting discriminant functions."
    },
    {
      "id": 100,
      "questionText": "Scenario: LDA applied to 3-class dataset with 50 features. Within-class scatter matrix is singular. Cause?",
      "options": [
        "Features too independent",
        "Number of features > number of samples per class",
        "Output dimension too high",
        "Algorithm error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "When features exceed sample count, the within-class scatter matrix becomes singular, requiring dimensionality reduction or regularization."
    }
  ]
}