Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import os | |
| import torch | |
| from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline | |
| from diffusers.utils import load_image | |
| from peft import PeftModel, LoraConfig | |
| from rembg import remove | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| width=512, | |
| height=512, | |
| model_id=model_id_default, | |
| seed=42, | |
| guidance_scale=7.0, | |
| lora_scale=1.0, | |
| num_inference_steps=20, | |
| controlnet_checkbox=False, | |
| controlnet_strength=0.0, | |
| controlnet_mode="edge_detection", | |
| controlnet_image=None, | |
| ip_adapter_checkbox=False, | |
| ip_adapter_scale=0.0, | |
| ip_adapter_image=None, | |
| remove_bg=None, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| ckpt_dir='./lora_pussinboots_logos' | |
| unet_sub_dir = os.path.join(ckpt_dir, "unet") | |
| #text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") | |
| if model_id is None: | |
| raise ValueError("Please specify the base model name or path") | |
| generator = torch.Generator(device).manual_seed(seed) | |
| params = {'prompt': prompt, | |
| 'negative_prompt': negative_prompt, | |
| 'guidance_scale': guidance_scale, | |
| 'num_inference_steps': num_inference_steps, | |
| 'width': width, | |
| 'height': height, | |
| 'generator': generator | |
| } | |
| if controlnet_checkbox: | |
| if controlnet_mode == "depth_map": | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-depth", | |
| cache_dir="./models_cache", | |
| torch_dtype=torch_dtype | |
| ) | |
| elif controlnet_mode == "pose_estimation": | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-openpose", | |
| cache_dir="./models_cache", | |
| torch_dtype=torch_dtype | |
| ) | |
| elif controlnet_mode == "normal_map": | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-normal", | |
| cache_dir="./models_cache", | |
| torch_dtype=torch_dtype | |
| ) | |
| elif controlnet_mode == "scribbles": | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-scribble", | |
| cache_dir="./models_cache", | |
| torch_dtype=torch_dtype | |
| ) | |
| else: | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-canny", | |
| cache_dir="./models_cache", | |
| torch_dtype=torch_dtype | |
| ) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, | |
| controlnet=controlnet, | |
| torch_dtype=torch_dtype, | |
| safety_checker=None).to(device) | |
| params['image'] = controlnet_image | |
| params['controlnet_conditioning_scale'] = float(controlnet_strength) | |
| else: | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, | |
| torch_dtype=torch_dtype, | |
| safety_checker=None).to(device) | |
| pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir) | |
| #pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir) | |
| # исправляем ошибку устанорвки lora_scale - меняем на параметр "cross_attention_kwargs" | |
| # pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()}) | |
| params['cross_attention_kwargs'] = {"scale": float(lora_scale)} | |
| #pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()}) | |
| if torch_dtype in (torch.float16, torch.bfloat16): | |
| pipe.unet.half() | |
| #pipe.text_encoder.half() | |
| if ip_adapter_checkbox: | |
| pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") | |
| pipe.set_ip_adapter_scale(ip_adapter_scale) | |
| params['ip_adapter_image'] = ip_adapter_image | |
| pipe.to(device) | |
| image = pipe(**params).images[0] | |
| # Если выбрано удаление фона | |
| if remove_bg: | |
| image = remove(image) | |
| return image | |
| examples = [ | |
| "Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.", | |
| "Cat wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.", | |
| "A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.", | |
| "A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.", | |
| "A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.", | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| def controlnet_params(show_extra): | |
| return gr.update(visible=show_extra) | |
| with gr.Blocks(css=css, fill_height=True) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image demo") | |
| with gr.Row(): | |
| model_id = gr.Textbox( | |
| label="Model ID", | |
| max_lines=1, | |
| placeholder="Enter model id", | |
| value=model_id_default, | |
| ) | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter your negative prompt", | |
| ) | |
| with gr.Row(): | |
| seed = gr.Number( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=30.0, | |
| step=0.1, | |
| value=7.0, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| lora_scale = gr.Slider( | |
| label="LoRA scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=1.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=20, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| controlnet_checkbox = gr.Checkbox( | |
| label="ControlNet", | |
| value=False | |
| ) | |
| with gr.Column(visible=False) as controlnet_params: | |
| controlnet_strength = gr.Slider( | |
| label="ControlNet conditioning scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=1.0, | |
| ) | |
| controlnet_mode = gr.Dropdown( | |
| label="ControlNet mode", | |
| choices=["edge_detection", | |
| "depth_map", | |
| "pose_estimation", | |
| "normal_map", | |
| "scribbles"], | |
| value="edge_detection", | |
| max_choices=1 | |
| ) | |
| controlnet_image = gr.Image( | |
| label="ControlNet condition image", | |
| type="pil", | |
| format="png" | |
| ) | |
| controlnet_checkbox.change( | |
| fn=lambda x: gr.Row.update(visible=x), | |
| inputs=controlnet_checkbox, | |
| outputs=controlnet_params | |
| ) | |
| with gr.Row(): | |
| ip_adapter_checkbox = gr.Checkbox( | |
| label="IPAdapter", | |
| value=False | |
| ) | |
| with gr.Column(visible=False) as ip_adapter_params: | |
| ip_adapter_scale = gr.Slider( | |
| label="IPAdapter scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=1.0, | |
| ) | |
| ip_adapter_image = gr.Image( | |
| label="IPAdapter condition image", | |
| type="pil" | |
| ) | |
| ip_adapter_checkbox.change( | |
| fn=lambda x: gr.Row.update(visible=x), | |
| inputs=ip_adapter_checkbox, | |
| outputs=ip_adapter_params | |
| ) | |
| with gr.Accordion("Optional Settings", open=False): | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=512, # Replace with defaults that work for your model | |
| ) | |
| # Удаление фона------------------------------------------------------------------------------------------------ | |
| # Checkbox для удаления фона | |
| remove_bg = gr.Checkbox( | |
| label="Remove Background", | |
| value=False, | |
| interactive=True | |
| ) | |
| # ------------------------------------------------------------------------------------------------------------- | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| gr.on( | |
| triggers=[run_button.click], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| width, | |
| height, | |
| model_id, | |
| seed, | |
| guidance_scale, | |
| lora_scale, | |
| num_inference_steps, | |
| controlnet_checkbox, | |
| controlnet_strength, | |
| controlnet_mode, | |
| controlnet_image, | |
| ip_adapter_checkbox, | |
| ip_adapter_scale, | |
| ip_adapter_image, | |
| remove_bg, | |
| ], | |
| outputs=[result], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |