File size: 9,028 Bytes
953ffa0 23afc6c 953ffa0 9714372 953ffa0 9714372 953ffa0 9714372 77a7c21 9714372 77a7c21 9714372 77a7c21 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 6f99acd 9714372 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
license: gemma
base_model: google/codegemma-7b-it
tags:
- security
- cybersecurity
- secure-coding
- ai-security
- owasp
- code-generation
- qlora
- lora
- fine-tuned
- securecode
datasets:
- scthornton/securecode
library_name: peft
pipeline_tag: text-generation
language:
- code
- en
---
# CodeGemma 7B SecureCode
<div align="center">




**Security-specialized code model fine-tuned on the [SecureCode](https://huggingface.co/datasets/scthornton/securecode) dataset**
[Dataset](https://huggingface.co/datasets/scthornton/securecode) | [Paper (arXiv:2512.18542)](https://arxiv.org/abs/2512.18542) | [Model Collection](https://huggingface.co/collections/scthornton/securecode) | [perfecXion.ai](https://perfecxion.ai)
</div>
---
## What This Model Does
This model generates **secure code** when developers ask about building features. Instead of producing vulnerable implementations (like 45% of AI-generated code does), it:
- Identifies the security risks in common coding patterns
- Provides vulnerable *and* secure implementations side by side
- Explains how attackers would exploit the vulnerability
- Includes defense-in-depth guidance: logging, monitoring, SIEM integration, infrastructure hardening
The model was fine-tuned on **2,185 security training examples** covering both traditional web security (OWASP Top 10 2021) and AI/ML security (OWASP LLM Top 10 2025).
## Model Details
| | |
|---|---|
| **Base Model** | [CodeGemma 7B IT](https://huggingface.co/google/codegemma-7b-it) |
| **Parameters** | 7B |
| **Architecture** | Gemma |
| **Tier** | Tier 2: Mid-size Code Specialist |
| **Method** | QLoRA (4-bit NormalFloat quantization) |
| **LoRA Rank** | 16 (alpha=32) |
| **Target Modules** | `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj` (7 modules) |
| **Training Data** | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) (2,185 examples) |
| **Hardware** | NVIDIA A100 40GB |
Google's code-specialized Gemma variant. Strong instruction following with efficient architecture.
## Quick Start
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load with 4-bit quantization (matches training)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
"google/codegemma-7b-it",
quantization_config=bnb_config,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("scthornton/codegemma-7b-securecode")
model = PeftModel.from_pretrained(base_model, "scthornton/codegemma-7b-securecode")
# Ask a security-relevant coding question
messages = [
{"role": "user", "content": "How do I implement JWT authentication with refresh tokens in Python?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=2048, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
### Dataset
Trained on the full **[SecureCode](https://huggingface.co/datasets/scthornton/securecode)** unified dataset:
- **2,185 total examples** (1,435 web security + 750 AI/ML security)
- **20 vulnerability categories** across OWASP Top 10 2021 and OWASP LLM Top 10 2025
- **12+ programming languages** and **49+ frameworks**
- **4-turn conversational structure**: feature request, vulnerable/secure implementations, advanced probing, operational guidance
- **100% incident grounding**: every example tied to real CVEs, vendor advisories, or published attack research
### Hyperparameters
| Parameter | Value |
|-----------|-------|
| LoRA rank | 16 |
| LoRA alpha | 32 |
| LoRA dropout | 0.05 |
| Target modules | 7 linear layers |
| Quantization | 4-bit NormalFloat (NF4) |
| Learning rate | 2e-4 |
| LR scheduler | Cosine with 100-step warmup |
| Epochs | 3 |
| Per-device batch size | 2 |
| Gradient accumulation | 8x |
| Effective batch size | 16 |
| Max sequence length | 4096 tokens |
| Optimizer | paged_adamw_8bit |
| Precision | bf16 |
**Notes:** Requires `trust_remote_code=True`. Extended 4096-token context for full security conversations.
## Security Coverage
### Web Security (1,435 examples)
OWASP Top 10 2021: Broken Access Control, Cryptographic Failures, Injection, Insecure Design, Security Misconfiguration, Vulnerable Components, Authentication Failures, Software Integrity Failures, Logging/Monitoring Failures, SSRF.
Languages: Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, YAML.
### AI/ML Security (750 examples)
OWASP LLM Top 10 2025: Prompt Injection, Sensitive Information Disclosure, Supply Chain Vulnerabilities, Data/Model Poisoning, Improper Output Handling, Excessive Agency, System Prompt Leakage, Vector/Embedding Weaknesses, Misinformation, Unbounded Consumption.
Frameworks: LangChain, OpenAI, Anthropic, HuggingFace, LlamaIndex, ChromaDB, Pinecone, FastAPI, Flask, vLLM, CrewAI, and 30+ more.
## SecureCode Model Collection
This model is part of the **SecureCode** collection of 8 security-specialized models:
| Model | Base | Size | Tier | HuggingFace |
|-------|------|------|------|-------------|
| Llama 3.2 SecureCode | meta-llama/Llama-3.2-3B-Instruct | 3B | Accessible | [`llama-3.2-3b-securecode`](https://huggingface.co/scthornton/llama-3.2-3b-securecode) |
| Qwen2.5 Coder SecureCode | Qwen/Qwen2.5-Coder-7B-Instruct | 7B | Mid-size | [`qwen2.5-coder-7b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-7b-securecode) |
| DeepSeek Coder SecureCode | deepseek-ai/deepseek-coder-6.7b-instruct | 6.7B | Mid-size | [`deepseek-coder-6.7b-securecode`](https://huggingface.co/scthornton/deepseek-coder-6.7b-securecode) |
| CodeGemma SecureCode | google/codegemma-7b-it | 7B | Mid-size | [`codegemma-7b-securecode`](https://huggingface.co/scthornton/codegemma-7b-securecode) |
| CodeLlama SecureCode | codellama/CodeLlama-13b-Instruct-hf | 13B | Large | [`codellama-13b-securecode`](https://huggingface.co/scthornton/codellama-13b-securecode) |
| Qwen2.5 Coder 14B SecureCode | Qwen/Qwen2.5-Coder-14B-Instruct | 14B | Large | [`qwen2.5-coder-14b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-14b-securecode) |
| StarCoder2 SecureCode | bigcode/starcoder2-15b-instruct-v0.1 | 15B | Large | [`starcoder2-15b-securecode`](https://huggingface.co/scthornton/starcoder2-15b-securecode) |
| Granite 20B Code SecureCode | ibm-granite/granite-20b-code-instruct-8k | 20B | XL | [`granite-20b-code-securecode`](https://huggingface.co/scthornton/granite-20b-code-securecode) |
Choose based on your deployment constraints: **3B** for edge/mobile, **7B** for general use, **13B-15B** for deeper reasoning, **20B** for maximum capability.
## SecureCode Dataset Family
| Dataset | Examples | Focus | Link |
|---------|----------|-------|------|
| **SecureCode** | 2,185 | Unified (web + AI/ML) | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) |
| SecureCode Web | 1,435 | Web security (OWASP Top 10 2021) | [scthornton/securecode-web](https://huggingface.co/datasets/scthornton/securecode-web) |
| SecureCode AI/ML | 750 | AI/ML security (OWASP LLM Top 10 2025) | [scthornton/securecode-aiml](https://huggingface.co/datasets/scthornton/securecode-aiml) |
## Intended Use
**Use this model for:**
- Training AI coding assistants to write secure code
- Security education and training
- Vulnerability research and secure code review
- Building security-aware development tools
**Do not use this model for:**
- Offensive exploitation or automated attack generation
- Circumventing security controls
- Any activity that violates the base model's license
## Citation
```bibtex
@misc{thornton2026securecode,
title={SecureCode: A Production-Grade Multi-Turn Dataset for Training Security-Aware Code Generation Models},
author={Thornton, Scott},
year={2026},
publisher={perfecXion.ai},
url={https://huggingface.co/datasets/scthornton/securecode},
note={arXiv:2512.18542}
}
```
## Links
- **Dataset**: [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode)
- **Research Paper**: [arXiv:2512.18542](https://arxiv.org/abs/2512.18542)
- **Model Collection**: [huggingface.co/collections/scthornton/securecode](https://huggingface.co/collections/scthornton/securecode)
- **Author**: [perfecXion.ai](https://perfecxion.ai)
## License
This model is released under the **gemma** license (inherited from the base model). The training dataset ([SecureCode](https://huggingface.co/datasets/scthornton/securecode)) is licensed under **CC BY-NC-SA 4.0**.
|