Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWhen 'YES' Meets 'BUT': Can Large Models Comprehend Contradictory Humor Through Comparative Reasoning?
Understanding humor-particularly when it involves complex, contradictory narratives that require comparative reasoning-remains a significant challenge for large vision-language models (VLMs). This limitation hinders AI's ability to engage in human-like reasoning and cultural expression. In this paper, we investigate this challenge through an in-depth analysis of comics that juxtapose panels to create humor through contradictions. We introduce the YesBut (V2), a novel benchmark with 1,262 comic images from diverse multilingual and multicultural contexts, featuring comprehensive annotations that capture various aspects of narrative understanding. Using this benchmark, we systematically evaluate a wide range of VLMs through four complementary tasks spanning from surface content comprehension to deep narrative reasoning, with particular emphasis on comparative reasoning between contradictory elements. Our extensive experiments reveal that even the most advanced models significantly underperform compared to humans, with common failures in visual perception, key element identification, comparative analysis and hallucinations. We further investigate text-based training strategies and social knowledge augmentation methods to enhance model performance. Our findings not only highlight critical weaknesses in VLMs' understanding of cultural and creative expressions but also provide pathways toward developing context-aware models capable of deeper narrative understanding though comparative reasoning.
StyleSplat: 3D Object Style Transfer with Gaussian Splatting
Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
Cracking the Code of Juxtaposition: Can AI Models Understand the Humorous Contradictions
Recent advancements in large multimodal language models have demonstrated remarkable proficiency across a wide range of tasks. Yet, these models still struggle with understanding the nuances of human humor through juxtaposition, particularly when it involves nonlinear narratives that underpin many jokes and humor cues. This paper investigates this challenge by focusing on comics with contradictory narratives, where each comic consists of two panels that create a humorous contradiction. We introduce the YesBut benchmark, which comprises tasks of varying difficulty aimed at assessing AI's capabilities in recognizing and interpreting these comics, ranging from literal content comprehension to deep narrative reasoning. Through extensive experimentation and analysis of recent commercial or open-sourced large (vision) language models, we assess their capability to comprehend the complex interplay of the narrative humor inherent in these comics. Our results show that even state-of-the-art models still lag behind human performance on this task. Our findings offer insights into the current limitations and potential improvements for AI in understanding human creative expressions.
3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting
Scene image editing is crucial for entertainment, photography, and advertising design. Existing methods solely focus on either 2D individual object or 3D global scene editing. This results in a lack of a unified approach to effectively control and manipulate scenes at the 3D level with different levels of granularity. In this work, we propose 3DitScene, a novel and unified scene editing framework leveraging language-guided disentangled Gaussian Splatting that enables seamless editing from 2D to 3D, allowing precise control over scene composition and individual objects. We first incorporate 3D Gaussians that are refined through generative priors and optimization techniques. Language features from CLIP then introduce semantics into 3D geometry for object disentanglement. With the disentangled Gaussians, 3DitScene allows for manipulation at both the global and individual levels, revolutionizing creative expression and empowering control over scenes and objects. Experimental results demonstrate the effectiveness and versatility of 3DitScene in scene image editing. Code and online demo can be found at our project homepage: https://zqh0253.github.io/3DitScene/.
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce STYLEBREEDER, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.
WordArt Designer API: User-Driven Artistic Typography Synthesis with Large Language Models on ModelScope
This paper introduces the WordArt Designer API, a novel framework for user-driven artistic typography synthesis utilizing Large Language Models (LLMs) on ModelScope. We address the challenge of simplifying artistic typography for non-professionals by offering a dynamic, adaptive, and computationally efficient alternative to traditional rigid templates. Our approach leverages the power of LLMs to understand and interpret user input, facilitating a more intuitive design process. We demonstrate through various case studies how users can articulate their aesthetic preferences and functional requirements, which the system then translates into unique and creative typographic designs. Our evaluations indicate significant improvements in user satisfaction, design flexibility, and creative expression over existing systems. The WordArt Designer API not only democratizes the art of typography but also opens up new possibilities for personalized digital communication and design.
Singing Timbre Popularity Assessment Based on Multimodal Large Foundation Model
Automated singing assessment is crucial for education and entertainment. However, existing systems face two fundamental limitations: reliance on reference tracks, which stifles creative expression, and the simplification of complex performances into non-diagnostic scores based solely on pitch and rhythm. We advocate for a shift from discriminative to descriptive evaluation, creating a complete ecosystem for reference-free, multi-dimensional assessment. First, we introduce Sing-MD, a large-scale dataset annotated by experts across four dimensions: breath control, timbre quality, emotional expression, and vocal technique. Our analysis reveals significant annotation inconsistencies among experts, challenging the validity of traditional accuracy-based metrics. Second, addressing the memory limitations of Multimodal Large Language Models (MLLMs) in analyzing full-length songs, we propose VocalVerse. This efficient hybrid architecture leverages a lightweight acoustic encoder to model global performance features and long-term dependencies. Third, to address automated metric shortcomings, we establish the H-TPR (Human-in-the-loop Tiered Perceptual Ranking) benchmark, which evaluates a model's ability to generate perceptually valid rankings rather than predicting noisy ground-truth scores.
ORACLE: Leveraging Mutual Information for Consistent Character Generation with LoRAs in Diffusion Models
Text-to-image diffusion models have recently taken center stage as pivotal tools in promoting visual creativity across an array of domains such as comic book artistry, children's literature, game development, and web design. These models harness the power of artificial intelligence to convert textual descriptions into vivid images, thereby enabling artists and creators to bring their imaginative concepts to life with unprecedented ease. However, one of the significant hurdles that persist is the challenge of maintaining consistency in character generation across diverse contexts. Variations in textual prompts, even if minor, can yield vastly different visual outputs, posing a considerable problem in projects that require a uniform representation of characters throughout. In this paper, we introduce a novel framework designed to produce consistent character representations from a single text prompt across diverse settings. Through both quantitative and qualitative analyses, we demonstrate that our framework outperforms existing methods in generating characters with consistent visual identities, underscoring its potential to transform creative industries. By addressing the critical challenge of character consistency, we not only enhance the practical utility of these models but also broaden the horizons for artistic and creative expression.
Generative AI for Cel-Animation: A Survey
Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation
SPACE: Speech-driven Portrait Animation with Controllable Expression
Animating portraits using speech has received growing attention in recent years, with various creative and practical use cases. An ideal generated video should have good lip sync with the audio, natural facial expressions and head motions, and high frame quality. In this work, we present SPACE, which uses speech and a single image to generate high-resolution, and expressive videos with realistic head pose, without requiring a driving video. It uses a multi-stage approach, combining the controllability of facial landmarks with the high-quality synthesis power of a pretrained face generator. SPACE also allows for the control of emotions and their intensities. Our method outperforms prior methods in objective metrics for image quality and facial motions and is strongly preferred by users in pair-wise comparisons. The project website is available at https://deepimagination.cc/SPACE/
COIG-Writer: A High-Quality Dataset for Chinese Creative Writing with Thought Processes
Large language models exhibit systematic deficiencies in creative writing, particularly in non-English contexts where training data is scarce and lacks process-level supervision. We present COIG-Writer, a novel Chinese creative writing dataset that captures both diverse outputs and their underlying thought processes through systematic reverse-engineering of high-quality texts. Unlike existing datasets that provide only input-output pairs, COIG-Writer comprises 1,665 meticulously curated triplets spanning 51 genres, each containing: (1) a reverse-engineered prompt, (2) detailed creative reasoning documenting decision-making processes, and (3) the final text. Through comprehensive experiments, we identify a two-component model of creative writing: narrative logic (provided by process supervision) and linguistic expression (maintained by general-purpose data). Our findings reveal three critical insights: (1) Process supervision is highly effective but requires stabilization with general data. A ratio of at least one creative sample to twelve general samples is needed to achieve optimal performance; below this threshold, the win rate progressively degrades (from 62.75% down to 35.78%)., (2) creative capabilities are culturally-bound with no cross-lingual transfer (89.26pp gap between Chinese and English performance), and (3) lexical diversity inversely correlates with creative quality (TTR paradox), suggesting high diversity signals compensatory behavior for logical deficiencies. These findings establish that creative excellence emerges from the interaction between logical scaffolding and linguistic grounding, analogous to how mathematical reasoning enhances but cannot replace linguistic competence in foundation models.
ViPE: Visualise Pretty-much Everything
Figurative and non-literal expressions are profoundly integrated in human communication. Visualising such expressions allow us to convey our creative thoughts, and evoke nuanced emotions. Recent text-to-image models like Stable Diffusion, on the other hand, struggle to depict non-literal expressions. Recent works primarily deal with this issue by compiling humanly annotated datasets on a small scale, which not only demands specialised expertise but also proves highly inefficient. To address this issue, we introduce ViPE: Visualise Pretty-much Everything. ViPE offers a series of lightweight and robust language models that have been trained on a large-scale set of lyrics with noisy visual descriptions that represent their implicit meaning. The synthetic visual descriptions are generated by GPT3.5 relying on neither human annotations nor images. ViPE effectively expresses any arbitrary piece of text into a visualisable description, enabling meaningful and high-quality image generation. We provide compelling evidence that ViPE is more robust than GPT3.5 in synthesising visual elaborations. ViPE also exhibits an understanding of figurative expressions comparable to human experts, providing a powerful and open-source backbone to many downstream applications such as music video and caption generation.
LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.
A Framework and Dataset for Abstract Art Generation via CalligraphyGAN
With the advancement of deep learning, artificial intelligence (AI) has made many breakthroughs in recent years and achieved superhuman performance in various tasks such as object detection, reading comprehension, and video games. Generative Modeling, such as various Generative Adversarial Networks (GAN) models, has been applied to generate paintings and music. Research in Natural Language Processing (NLP) also had a leap forward in 2018 since the release of the pre-trained contextual neural language models such as BERT and recently released GPT3. Despite the exciting AI applications aforementioned, AI is still significantly lagging behind humans in creativity, which is often considered the ultimate moonshot for AI. Our work is inspired by Chinese calligraphy, which is a unique form of visual art where the character itself is an aesthetic painting. We also draw inspirations from paintings of the Abstract Expressionist movement in the 1940s and 1950s, such as the work by American painter Franz Kline. In this paper, we present a creative framework based on Conditional Generative Adversarial Networks and Contextual Neural Language Model to generate abstract artworks that have intrinsic meaning and aesthetic value, which is different from the existing work, such as image captioning and text-to-image generation, where the texts are the descriptions of the images. In addition, we have publicly released a Chinese calligraphy image dataset and demonstrate our framework using a prototype system and a user study.
Multilingual Multi-Figurative Language Detection
Figures of speech help people express abstract concepts and evoke stronger emotions than literal expressions, thereby making texts more creative and engaging. Due to its pervasive and fundamental character, figurative language understanding has been addressed in Natural Language Processing, but it's highly understudied in a multilingual setting and when considering more than one figure of speech at the same time. To bridge this gap, we introduce multilingual multi-figurative language modelling, and provide a benchmark for sentence-level figurative language detection, covering three common figures of speech and seven languages. Specifically, we develop a framework for figurative language detection based on template-based prompt learning. In so doing, we unify multiple detection tasks that are interrelated across multiple figures of speech and languages, without requiring task- or language-specific modules. Experimental results show that our framework outperforms several strong baselines and may serve as a blueprint for the joint modelling of other interrelated tasks.
Automatic Detection of Moral Values in Music Lyrics
Moral values play a fundamental role in how we evaluate information, make decisions, and form judgements around important social issues. The possibility to extract morality rapidly from lyrics enables a deeper understanding of our music-listening behaviours. Building on the Moral Foundations Theory (MFT), we tasked a set of transformer-based language models (BERT) fine-tuned on 2,721 synthetic lyrics generated by a large language model (GPT-4) to detect moral values in 200 real music lyrics annotated by two experts.We evaluate their predictive capabilities against a series of baselines including out-of-domain (BERT fine-tuned on MFT-annotated social media texts) and zero-shot (GPT-4) classification. The proposed models yielded the best accuracy across experiments, with an average F1 weighted score of 0.8. This performance is, on average, 5% higher than out-of-domain and zero-shot models. When examining precision in binary classification, the proposed models perform on average 12% higher than the baselines.Our approach contributes to annotation-free and effective lyrics morality learning, and provides useful insights into the knowledge distillation of LLMs regarding moral expression in music, and the potential impact of these technologies on the creative industries and musical culture.
VLM-Guided Adaptive Negative Prompting for Creative Generation
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.
Divergent Creativity in Humans and Large Language Models
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
Artistic Strategies to Guide Neural Networks
Artificial Intelligence is present in the generation and distribution of culture. How do artists exploit neural networks? What impact do these algorithms have on artistic practice? Through a practice-based research methodology, this paper explores the potentials and limits of current AI technology, more precisely deep neural networks, in the context of image, text, form and translation of semiotic spaces. In a relatively short time, the generation of high-resolution images and 3D objects has been achieved. There are models, like CLIP and text2mesh, that do not need the same kind of media input as the output; we call them translation models. Such a twist contributes toward creativity arousal, which manifests itself in art practice and feeds back to the developers' pipeline. Yet again, we see how artworks act as catalysts for technology development. Those creative scenarios and processes are enabled not solely by AI models, but by the hard work behind implementing these new technologies. AI does not create a 'push-a-button' masterpiece but requires a deep understanding of the technology behind it, and a creative and critical mindset. Thus, AI opens new avenues for inspiration and offers novel tool sets, and yet again the question of authorship is asked.
On the Creativity of Large Language Models
Large Language Models (LLMs) are revolutionizing several areas of Artificial Intelligence. One of the most remarkable applications is creative writing, e.g., poetry or storytelling: the generated outputs are often of astonishing quality. However, a natural question arises: can LLMs be really considered creative? In this article, we first analyze the development of LLMs under the lens of creativity theories, investigating the key open questions and challenges. In particular, we focus our discussion on the dimensions of value, novelty, and surprise as proposed by Margaret Boden in her work. Then, we consider different classic perspectives, namely product, process, press, and person. We discuss a set of ``easy'' and ``hard'' problems in machine creativity, presenting them in relation to LLMs. Finally, we examine the societal impact of these technologies with a particular focus on the creative industries, analyzing the opportunities offered, the challenges arising from them, and the potential associated risks, from both legal and ethical points of view.
Creative Image Generation with Diffusion Model
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
Benchmarking Language Model Creativity: A Case Study on Code Generation
As LLMs become increasingly prevalent, it is interesting to consider how ``creative'' these models can be. From cognitive science, creativity consists of at least two key characteristics: convergent thinking (purposefulness to achieve a given goal) and divergent thinking (adaptability to new environments or constraints) runco2003critical. In this work, we introduce a framework for quantifying LLM creativity that incorporates the two characteristics. This is achieved by (1) Denial Prompting pushes LLMs to come up with more creative solutions to a given problem by incrementally imposing new constraints on the previous solution, compelling LLMs to adopt new strategies, and (2) defining and computing the NeoGauge metric which examines both convergent and divergent thinking in the generated creative responses by LLMs. We apply the proposed framework on Codeforces problems, a natural data source for collecting human coding solutions. We quantify NeoGauge for various proprietary and open-source models and find that even the most creative model, GPT-4, still falls short of demonstrating human-like creativity. We also experiment with advanced reasoning strategies (MCTS, self-correction, etc.) and observe no significant improvement in creativity. As a by-product of our analysis, we release NeoCoder dataset for reproducing our results on future models.
Creation-MMBench: Assessing Context-Aware Creative Intelligence in MLLM
Creativity is a fundamental aspect of intelligence, involving the ability to generate novel and appropriate solutions across diverse contexts. While Large Language Models (LLMs) have been extensively evaluated for their creative capabilities, the assessment of Multimodal Large Language Models (MLLMs) in this domain remains largely unexplored. To address this gap, we introduce Creation-MMBench, a multimodal benchmark specifically designed to evaluate the creative capabilities of MLLMs in real-world, image-based tasks. The benchmark comprises 765 test cases spanning 51 fine-grained tasks. To ensure rigorous evaluation, we define instance-specific evaluation criteria for each test case, guiding the assessment of both general response quality and factual consistency with visual inputs. Experimental results reveal that current open-source MLLMs significantly underperform compared to proprietary models in creative tasks. Furthermore, our analysis demonstrates that visual fine-tuning can negatively impact the base LLM's creative abilities. Creation-MMBench provides valuable insights for advancing MLLM creativity and establishes a foundation for future improvements in multimodal generative intelligence. Full data and evaluation code is released on https://github.com/open-compass/Creation-MMBench.
How Do Hackathons Foster Creativity? Towards AI Collaborative Evaluation of Creativity at Scale
Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon formats lead to creative outcomes. We conducted a computational analysis of 193,353 hackathon projects. By operationalizing creativity through usefulness and novelty, we refined our dataset to 10,363 projects, allowing us to analyze how participant characteristics, collaboration patterns, and hackathon setups influence the development of creative projects. The contribution of our paper is twofold: We identified means for organizers to foster creativity in hackathons. We also explore the use of large language models (LLMs) to augment the evaluation of creative outcomes and discuss challenges and opportunities of doing this, which has implications for creativity research at large.
Spellburst: A Node-based Interface for Exploratory Creative Coding with Natural Language Prompts
Creative coding tasks are often exploratory in nature. When producing digital artwork, artists usually begin with a high-level semantic construct such as a "stained glass filter" and programmatically implement it by varying code parameters such as shape, color, lines, and opacity to produce visually appealing results. Based on interviews with artists, it can be effortful to translate semantic constructs to program syntax, and current programming tools don't lend well to rapid creative exploration. To address these challenges, we introduce Spellburst, a large language model (LLM) powered creative-coding environment. Spellburst provides (1) a node-based interface that allows artists to create generative art and explore variations through branching and merging operations, (2) expressive prompt-based interactions to engage in semantic programming, and (3) dynamic prompt-driven interfaces and direct code editing to seamlessly switch between semantic and syntactic exploration. Our evaluation with artists demonstrates Spellburst's potential to enhance creative coding practices and inform the design of computational creativity tools that bridge semantic and syntactic spaces.
POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation
State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.
Evaluating Creative Short Story Generation in Humans and Large Language Models
Story-writing is a fundamental aspect of human imagination, relying heavily on creativity to produce narratives that are novel, effective, and surprising. While large language models (LLMs) have demonstrated the ability to generate high-quality stories, their creative story-writing capabilities remain under-explored. In this work, we conduct a systematic analysis of creativity in short story generation across 60 LLMs and 60 people using a five-sentence cue-word-based creative story-writing task. We use measures to automatically evaluate model- and human-generated stories across several dimensions of creativity, including novelty, surprise, diversity, and linguistic complexity. We also collect creativity ratings and Turing Test classifications from non-expert and expert human raters and LLMs. Automated metrics show that LLMs generate stylistically complex stories, but tend to fall short in terms of novelty, surprise and diversity when compared to average human writers. Expert ratings generally coincide with automated metrics. However, LLMs and non-experts rate LLM stories to be more creative than human-generated stories. We discuss why and how these differences in ratings occur, and their implications for both human and artificial creativity.
CreativeConnect: Supporting Reference Recombination for Graphic Design Ideation with Generative AI
Graphic designers often get inspiration through the recombination of references. Our formative study (N=6) reveals that graphic designers focus on conceptual keywords during this process, and want support for discovering the keywords, expanding them, and exploring diverse recombination options of them, while still having room for designers' creativity. We propose CreativeConnect, a system with generative AI pipelines that helps users discover useful elements from the reference image using keywords, recommends relevant keywords, generates diverse recombination options with user-selected keywords, and shows recombinations as sketches with text descriptions. Our user study (N=16) showed that CreativeConnect helped users discover keywords from the reference and generate multiple ideas based on them, ultimately helping users produce more design ideas with higher self-reported creativity compared to the baseline system without generative pipelines. While CreativeConnect was shown effective in ideation, we discussed how CreativeConnect can be extended to support other types of tasks in creativity support.
Divergent-Convergent Thinking in Large Language Models for Creative Problem Generation
Large language models (LLMs) have significant potential for generating educational questions and problems, enabling educators to create large-scale learning materials. However, LLMs are fundamentally limited by the ``Artificial Hivemind'' effect, where they generate similar responses within the same model and produce homogeneous outputs across different models. As a consequence, students may be exposed to overly similar and repetitive LLM-generated problems, which harms diversity of thought. Drawing inspiration from Wallas's theory of creativity and Guilford's framework of divergent-convergent thinking, we propose CreativeDC, a two-phase prompting method that explicitly scaffolds the LLM's reasoning into distinct phases. By decoupling creative exploration from constraint satisfaction, our method enables LLMs to explore a broader space of ideas before committing to a final problem. We evaluate CreativeDC for creative problem generation using a comprehensive set of metrics that capture diversity, novelty, and utility. The results show that CreativeDC achieves significantly higher diversity and novelty compared to baselines while maintaining high utility. Moreover, scaling analysis shows that CreativeDC generates a larger effective number of distinct problems as more are sampled, increasing at a faster rate than baseline methods.
Assessing and Understanding Creativity in Large Language Models
In the field of natural language processing, the rapid development of large language model (LLM) has attracted more and more attention. LLMs have shown a high level of creativity in various tasks, but the methods for assessing such creativity are inadequate. The assessment of LLM creativity needs to consider differences from humans, requiring multi-dimensional measurement while balancing accuracy and efficiency. This paper aims to establish an efficient framework for assessing the level of creativity in LLMs. By adapting the modified Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks, emphasizing 4 criteria including Fluency, Flexibility, Originality, and Elaboration. In this context, we develop a comprehensive dataset of 700 questions for testing and an LLM-based evaluation method. In addition, this study presents a novel analysis of LLMs' responses to diverse prompts and role-play situations. We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration. Besides, the use of prompts and the role-play settings of the model significantly influence creativity. Additionally, the experimental results also indicate that collaboration among multiple LLMs can enhance originality. Notably, our findings reveal a consensus between human evaluations and LLMs regarding the personality traits that influence creativity. The findings underscore the significant impact of LLM design on creativity and bridges artificial intelligence and human creativity, offering insights into LLMs' creativity and potential applications.
Art or Artifice? Large Language Models and the False Promise of Creativity
Researchers have argued that large language models (LLMs) exhibit high-quality writing capabilities from blogs to stories. However, evaluating objectively the creativity of a piece of writing is challenging. Inspired by the Torrance Test of Creative Thinking (TTCT), which measures creativity as a process, we use the Consensual Assessment Technique [3] and propose the Torrance Test of Creative Writing (TTCW) to evaluate creativity as a product. TTCW consists of 14 binary tests organized into the original dimensions of Fluency, Flexibility, Originality, and Elaboration. We recruit 10 creative writers and implement a human assessment of 48 stories written either by professional authors or LLMs using TTCW. Our analysis shows that LLM-generated stories pass 3-10X less TTCW tests than stories written by professionals. In addition, we explore the use of LLMs as assessors to automate the TTCW evaluation, revealing that none of the LLMs positively correlate with the expert assessments.
Can AI Be as Creative as Humans?
Creativity serves as a cornerstone for societal progress and innovation, but its assessment remains a complex and often subjective endeavor. With the rise of advanced generative AI models capable of tasks once reserved for human creativity, the study of AI's creative potential becomes imperative for its responsible development and application. This paper addresses the complexities in defining and evaluating creativity by introducing a new concept called Relative Creativity. Instead of trying to define creativity universally, we shift the focus to whether AI can match the creative abilities of a hypothetical human. This perspective draws inspiration from the Turing Test, expanding upon it to address the challenges and subjectivities inherent in evaluating creativity. This methodological shift facilitates a statistically quantifiable evaluation of AI's creativity, which we term Statistical Creativity. This approach allows for direct comparisons of AI's creative abilities with those of specific human groups. Building on this foundation, we discuss the application of statistical creativity in contemporary prompt-conditioned autoregressive models. In addition to defining and analyzing a measure of creativity, we introduce an actionable training guideline, effectively bridging the gap between theoretical quantification of creativity and practical model training. Through these multifaceted contributions, the paper establishes a cohesive, continuously evolving, and transformative framework for assessing and fostering statistical creativity in AI models.
Automatic Assessment of Divergent Thinking in Chinese Language with TransDis: A Transformer-Based Language Model Approach
Language models have been increasingly popular for automatic creativity assessment, generating semantic distances to objectively measure the quality of creative ideas. However, there is currently a lack of an automatic assessment system for evaluating creative ideas in the Chinese language. To address this gap, we developed TransDis, a scoring system using transformer-based language models, capable of providing valid originality (quality) and flexibility (variety) scores for Alternative Uses Task (AUT) responses in Chinese. Study 1 demonstrated that the latent model-rated originality factor, comprised of three transformer-based models, strongly predicted human originality ratings, and the model-rated flexibility strongly correlated with human flexibility ratings as well. Criterion validity analyses indicated that model-rated originality and flexibility positively correlated to other creativity measures, demonstrating similar validity to human ratings. Study 2 & 3 showed that TransDis effectively distinguished participants instructed to provide creative vs. common uses (Study 2) and participants instructed to generate ideas in a flexible vs. persistent way (Study 3). Our findings suggest that TransDis can be a reliable and low-cost tool for measuring idea originality and flexibility in Chinese language, potentially paving the way for automatic creativity assessment in other languages. We offer an open platform to compute originality and flexibility for AUT responses in Chinese and over 50 other languages (https://osf.io/59jv2/).
SketchDreamer: Interactive Text-Augmented Creative Sketch Ideation
Artificial Intelligence Generated Content (AIGC) has shown remarkable progress in generating realistic images. However, in this paper, we take a step "backward" and address AIGC for the most rudimentary visual modality of human sketches. Our objective is on the creative nature of sketches, and that creative sketching should take the form of an interactive process. We further enable text to drive the sketch ideation process, allowing creativity to be freely defined, while simultaneously tackling the challenge of "I can't sketch". We present a method to generate controlled sketches using a text-conditioned diffusion model trained on pixel representations of images. Our proposed approach, referred to as SketchDreamer, integrates a differentiable rasteriser of Bezier curves that optimises an initial input to distil abstract semantic knowledge from a pretrained diffusion model. We utilise Score Distillation Sampling to learn a sketch that aligns with a given caption, which importantly enable both text and sketch to interact with the ideation process. Our objective is to empower non-professional users to create sketches and, through a series of optimisation processes, transform a narrative into a storyboard by expanding the text prompt while making minor adjustments to the sketch input. Through this work, we hope to aspire the way we create visual content, democratise the creative process, and inspire further research in enhancing human creativity in AIGC. The code is available at https://github.com/WinKawaks/SketchDreamer.
Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Importantly, this tradeoff remains persistent even at scale, casting doubt on the long-term creative potential of LLMs in their current form. Together, our conceptual framework and empirical findings provide a foundation for understanding and improving creativity in modern AI models, bridging the gap between human and machine intelligence.
Large Language Models for Scientific Idea Generation: A Creativity-Centered Survey
Scientific idea generation lies at the heart of scientific discovery and has driven human progress-whether by solving unsolved problems or proposing novel hypotheses to explain unknown phenomena. Unlike standard scientific reasoning or general creative generation, idea generation in science is a multi-objective and open-ended task, where the novelty of a contribution is as essential as its empirical soundness. Large language models (LLMs) have recently emerged as promising generators of scientific ideas, capable of producing coherent and factual outputs with surprising intuition and acceptable reasoning, yet their creative capacity remains inconsistent and poorly understood. This survey provides a structured synthesis of methods for LLM-driven scientific ideation, examining how different approaches balance creativity with scientific soundness. We categorize existing methods into five complementary families: External knowledge augmentation, Prompt-based distributional steering, Inference-time scaling, Multi-agent collaboration, and Parameter-level adaptation. To interpret their contributions, we employ two complementary frameworks: Boden's taxonomy of Combinatorial, Exploratory and Transformational creativity to characterize the level of ideas each family expected to generate, and Rhodes' 4Ps framework-Person, Process, Press, and Product-to locate the aspect or source of creativity that each method emphasizes. By aligning methodological advances with creativity frameworks, this survey clarifies the state of the field and outlines key directions toward reliable, systematic, and transformative applications of LLMs in scientific discovery.
A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative Writing
We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research.
Digits that are not: Generating new types through deep neural nets
For an artificial creative agent, an essential driver of the search for novelty is a value function which is often provided by the system designer or users. We argue that an important barrier for progress in creativity research is the inability of these systems to develop their own notion of value for novelty. We propose a notion of knowledge-driven creativity that circumvent the need for an externally imposed value function, allowing the system to explore based on what it has learned from a set of referential objects. The concept is illustrated by a specific knowledge model provided by a deep generative autoencoder. Using the described system, we train a knowledge model on a set of digit images and we use the same model to build coherent sets of new digits that do not belong to known digit types.
Cooking Up Creativity: Enhancing LLM Creativity through Structured Recombination
Large Language Models (LLMs) excel at many tasks, yet they struggle to produce truly creative, diverse ideas. In this paper, we introduce a novel approach that enhances LLM creativity. We apply LLMs for translating between natural language and structured representations, and perform the core creative leap via cognitively inspired manipulations on these representations. Our notion of creativity goes beyond superficial token-level variations; rather, we recombine structured representations of existing ideas, enabling our system to effectively explore a more abstract landscape of ideas. We demonstrate our approach in the culinary domain with DishCOVER, a model that generates creative recipes. Experiments and domain-expert evaluations reveal that our outputs, which are mostly coherent and feasible, significantly surpass GPT-4o in terms of novelty and diversity, thus outperforming it in creative generation. We hope our work inspires further research into structured creativity in AI.
Evaluating the Creativity of LLMs in Persian Literary Text Generation
Large language models (LLMs) have demonstrated notable creative abilities in generating literary texts, including poetry and short stories. However, prior research has primarily centered on English, with limited exploration of non-English literary traditions and without standardized methods for assessing creativity. In this paper, we evaluate the capacity of LLMs to generate Persian literary text enriched with culturally relevant expressions. We build a dataset of user-generated Persian literary spanning 20 diverse topics and assess model outputs along four creativity dimensions-originality, fluency, flexibility, and elaboration-by adapting the Torrance Tests of Creative Thinking. To reduce evaluation costs, we adopt an LLM as a judge for automated scoring and validate its reliability against human judgments using intraclass correlation coefficients, observing strong agreement. In addition, we analyze the models' ability to understand and employ four core literary devices: simile, metaphor, hyperbole, and antithesis. Our results highlight both the strengths and limitations of LLMs in Persian literary text generation, underscoring the need for further refinement.
Creative Preference Optimization
While Large Language Models (LLMs) have demonstrated impressive performance across natural language generation tasks, their ability to generate truly creative content-characterized by novelty, diversity, surprise, and quality-remains limited. Existing methods for enhancing LLM creativity often focus narrowly on diversity or specific tasks, failing to address creativity's multifaceted nature in a generalizable way. In this work, we propose Creative Preference Optimization (CrPO), a novel alignment method that injects signals from multiple creativity dimensions into the preference optimization objective in a modular fashion. We train and evaluate creativity-augmented versions of several models using CrPO and MuCE, a new large-scale human preference dataset spanning over 200,000 human-generated responses and ratings from more than 30 psychological creativity assessments. Our models outperform strong baselines, including GPT-4o, on both automated and human evaluations, producing more novel, diverse, and surprising generations while maintaining high output quality. Additional evaluations on NoveltyBench further confirm the generalizability of our approach. Together, our results demonstrate that directly optimizing for creativity within preference frameworks is a promising direction for advancing the creative capabilities of LLMs without compromising output quality.
How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment
Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- mimics the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI, and that participants were more likely to knowingly adopt AI ideas when the task was difficult. Our findings suggest that introducing AI ideas into society may increase collective diversity but not individual creativity.
Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs
Piece it Together: Part-Based Concepting with IP-Priors
Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
IP-Composer: Semantic Composition of Visual Concepts
Content creators often draw inspiration from multiple visual sources, combining distinct elements to craft new compositions. Modern computational approaches now aim to emulate this fundamental creative process. Although recent diffusion models excel at text-guided compositional synthesis, text as a medium often lacks precise control over visual details. Image-based composition approaches can capture more nuanced features, but existing methods are typically limited in the range of concepts they can capture, and require expensive training procedures or specialized data. We present IP-Composer, a novel training-free approach for compositional image generation that leverages multiple image references simultaneously, while using natural language to describe the concept to be extracted from each image. Our method builds on IP-Adapter, which synthesizes novel images conditioned on an input image's CLIP embedding. We extend this approach to multiple visual inputs by crafting composite embeddings, stitched from the projections of multiple input images onto concept-specific CLIP-subspaces identified through text. Through comprehensive evaluation, we show that our approach enables more precise control over a larger range of visual concept compositions.
Spark: A System for Scientifically Creative Idea Generation
Recently, large language models (LLMs) have shown promising abilities to generate novel research ideas in science, a direction which coincides with many foundational principles in computational creativity (CC). In light of these developments, we present an idea generation system named Spark that couples retrieval-augmented idea generation using LLMs with a reviewer model named Judge trained on 600K scientific reviews from OpenReview. Our work is both a system demonstration and intended to inspire other CC researchers to explore grounding the generation and evaluation of scientific ideas within foundational CC principles. To this end, we release the annotated dataset used to train Judge, inviting other researchers to explore the use of LLMs for idea generation and creative evaluations.
CreativeSynth: Creative Blending and Synthesis of Visual Arts based on Multimodal Diffusion
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images. However, adapting these models for artistic image editing presents two significant challenges. Firstly, users struggle to craft textual prompts that meticulously detail visual elements of the input image. Secondly, prevalent models, when effecting modifications in specific zones, frequently disrupt the overall artistic style, complicating the attainment of cohesive and aesthetically unified artworks. To surmount these obstacles, we build the innovative unified framework CreativeSynth, which is based on a diffusion model with the ability to coordinate multimodal inputs and multitask in the field of artistic image generation. By integrating multimodal features with customized attention mechanisms, CreativeSynth facilitates the importation of real-world semantic content into the domain of art through inversion and real-time style transfer. This allows for the precise manipulation of image style and content while maintaining the integrity of the original model parameters. Rigorous qualitative and quantitative evaluations underscore that CreativeSynth excels in enhancing artistic images' fidelity and preserves their innate aesthetic essence. By bridging the gap between generative models and artistic finesse, CreativeSynth becomes a custom digital palette.
Creative Agents: Empowering Agents with Imagination for Creative Tasks
We study building embodied agents for open-ended creative tasks. While existing methods build instruction-following agents that can perform diverse open-ended tasks, none of them demonstrates creativity -- the ability to give novel and diverse task solutions implicit in the language instructions. This limitation comes from their inability to convert abstract language instructions into concrete task goals in the environment and perform long-horizon planning for such complicated goals. Given the observation that humans perform creative tasks with the help of imagination, we propose a class of solutions for creative agents, where the controller is enhanced with an imaginator that generates detailed imaginations of task outcomes conditioned on language instructions. We introduce several approaches to implementing the components of creative agents. We implement the imaginator with either a large language model for textual imagination or a diffusion model for visual imagination. The controller can either be a behavior-cloning policy learned from data or a pre-trained foundation model generating executable codes in the environment. We benchmark creative tasks with the challenging open-world game Minecraft, where the agents are asked to create diverse buildings given free-form language instructions. In addition, we propose novel evaluation metrics for open-ended creative tasks utilizing GPT-4V, which holds many advantages over existing metrics. We perform a detailed experimental analysis of creative agents, showing that creative agents are the first AI agents accomplishing diverse building creation in the survival mode of Minecraft. Our benchmark and models are open-source for future research on creative agents (https://github.com/PKU-RL/Creative-Agents).
VisuCraft: Enhancing Large Vision-Language Models for Complex Visual-Guided Creative Content Generation via Structured Information Extraction
This paper introduces VisuCraft, a novel framework designed to significantly enhance the capabilities of Large Vision-Language Models (LVLMs) in complex visual-guided creative content generation. Existing LVLMs often exhibit limitations in maintaining high visual fidelity, genuine creativity, and precise adherence to nuanced user instructions when generating long-form texts. VisuCraft addresses these challenges by integrating a multimodal structured information extractor (E) and a dynamic prompt generation module (G). The extractor distills fine-grained visual attributes from input images into a rich, structured representation, which the dynamic prompt module then combines with user instructions to create highly optimized prompts for underlying LVLMs (e.g., LLaVA, InstructBLIP). Evaluated on the self-constructed ImageStoryGen-500K dataset using VisuGen Metrics (Visual Grounding, Creativity, and Instruction Adherence), VisuCraft consistently outperforms baseline LVLMs across tasks like story generation and poetry composition. Our results demonstrate remarkable improvements, particularly in creativity and instruction adherence, validating VisuCraft's effectiveness in producing imaginative, visually grounded, and user-aligned long-form creative text. This work unlocks new potential for LVLMs in sophisticated creative AI applications.
LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play
Large language models (LLMs) have shown exceptional proficiency in natural language processing but often fall short of generating creative and original responses to open-ended questions. To enhance LLM creativity, our key insight is to emulate the human process of inducing collective creativity through engaging discussions with participants from diverse backgrounds and perspectives. To this end, we propose LLM Discussion, a three-phase discussion framework that facilitates vigorous and diverging idea exchanges and ensures convergence to creative answers. Moreover, we adopt a role-playing technique by assigning distinct roles to LLMs to combat the homogeneity of LLMs. We evaluate the efficacy of the proposed framework with the Alternative Uses Test, Similarities Test, Instances Test, and Scientific Creativity Test through both LLM evaluation and human study. Our proposed framework outperforms single-LLM approaches and existing multi-LLM frameworks across various creativity metrics.
ConceptLab: Creative Generation using Diffusion Prior Constraints
Recent text-to-image generative models have enabled us to transform our words into vibrant, captivating imagery. The surge of personalization techniques that has followed has also allowed us to imagine unique concepts in new scenes. However, an intriguing question remains: How can we generate a new, imaginary concept that has never been seen before? In this paper, we present the task of creative text-to-image generation, where we seek to generate new members of a broad category (e.g., generating a pet that differs from all existing pets). We leverage the under-studied Diffusion Prior models and show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior, resulting in a set of "prior constraints". To keep our generated concept from converging into existing members, we incorporate a question-answering model that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations. Finally, we show that our prior constraints can also serve as a strong mixing mechanism allowing us to create hybrids between generated concepts, introducing even more flexibility into the creative process.
A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles
In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.
