new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

GENIUS: Generative Fluid Intelligence Evaluation Suite

Unified Multimodal Models (UMMs) have shown remarkable progress in visual generation. Yet, existing benchmarks predominantly assess Crystallized Intelligence, which relies on recalling accumulated knowledge and learned schemas. This focus overlooks Generative Fluid Intelligence (GFI): the capacity to induce patterns, reason through constraints, and adapt to novel scenarios on the fly. To rigorously assess this capability, we introduce GENIUS (GEN Fluid Intelligence EvalUation Suite). We formalize GFI as a synthesis of three primitives. These include Inducing Implicit Patterns (e.g., inferring personalized visual preferences), Executing Ad-hoc Constraints (e.g., visualizing abstract metaphors), and Adapting to Contextual Knowledge (e.g., simulating counter-intuitive physics). Collectively, these primitives challenge models to solve problems grounded entirely in the immediate context. Our systematic evaluation of 12 representative models reveals significant performance deficits in these tasks. Crucially, our diagnostic analysis disentangles these failure modes. It demonstrates that deficits stem from limited context comprehension rather than insufficient intrinsic generative capability. To bridge this gap, we propose a training-free attention intervention strategy. Ultimately, GENIUS establishes a rigorous standard for GFI, guiding the field beyond knowledge utilization toward dynamic, general-purpose reasoning. Our dataset and code will be released at: https://github.com/arctanxarc/GENIUS{https://github.com/arctanxarc/GENIUS}.

GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation

We introduce GENIUS: a conditional text generation model using sketches as input, which can fill in the missing contexts for a given sketch (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large-scale textual corpus with a novel reconstruction from sketch objective using an extreme and selective masking strategy, enabling it to generate diverse and high-quality texts given sketches. Comparison with other competitive conditional language models (CLMs) reveals the superiority of GENIUS's text generation quality. We further show that GENIUS can be used as a strong and ready-to-use data augmentation tool for various natural language processing (NLP) tasks. Most existing textual data augmentation methods are either too conservative, by making small changes to the original text, or too aggressive, by creating entirely new samples. With GENIUS, we propose GeniusAug, which first extracts the target-aware sketches from the original training set and then generates new samples based on the sketches. Empirical experiments on 6 text classification datasets show that GeniusAug significantly improves the models' performance in both in-distribution (ID) and out-of-distribution (OOD) settings. We also demonstrate the effectiveness of GeniusAug on named entity recognition (NER) and machine reading comprehension (MRC) tasks. (Code and models are publicly available at https://github.com/microsoft/SCGLab and https://github.com/beyondguo/genius)

  • 7 authors
·
Nov 18, 2022

LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems

Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.

  • 2 authors
·
Oct 18, 2024