new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 27

DiffusionNFT: Online Diffusion Reinforcement with Forward Process

Online reinforcement learning (RL) has been central to post-training language models, but its extension to diffusion models remains challenging due to intractable likelihoods. Recent works discretize the reverse sampling process to enable GRPO-style training, yet they inherit fundamental drawbacks, including solver restrictions, forward-reverse inconsistency, and complicated integration with classifier-free guidance (CFG). We introduce Diffusion Negative-aware FineTuning (DiffusionNFT), a new online RL paradigm that optimizes diffusion models directly on the forward process via flow matching. DiffusionNFT contrasts positive and negative generations to define an implicit policy improvement direction, naturally incorporating reinforcement signals into the supervised learning objective. This formulation enables training with arbitrary black-box solvers, eliminates the need for likelihood estimation, and requires only clean images rather than sampling trajectories for policy optimization. DiffusionNFT is up to 25times more efficient than FlowGRPO in head-to-head comparisons, while being CFG-free. For instance, DiffusionNFT improves the GenEval score from 0.24 to 0.98 within 1k steps, while FlowGRPO achieves 0.95 with over 5k steps and additional CFG employment. By leveraging multiple reward models, DiffusionNFT significantly boosts the performance of SD3.5-Medium in every benchmark tested.

  • 10 authors
·
Sep 19, 2025 2

Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback

Instruction-based image editing has achieved remarkable progress; however, models solely trained via supervised fine-tuning often overfit to annotated patterns, hindering their ability to explore and generalize beyond training distributions. To this end, we introduce Edit-R1, a novel post-training framework for instruction-based image editing based on policy optimization. Specifically, we utilize Diffusion Negative-aware Finetuning (DiffusionNFT), a likelihood-free policy optimization method consistent with the flow matching forward process, thereby enabling the use of higher-order samplers and more efficient training. Another key challenge here is the absence of a universal reward model, resulting from the diverse nature of editing instructions and tasks. To bridge this gap, we employ a Multimodal Large Language Model (MLLM) as a unified, training-free reward model, leveraging its output logits to provide fine-grained feedback. Furthermore, we carefully design a low-variance group filtering mechanism to reduce MLLM scoring noise and stabilize optimization. UniWorld-V2, trained with this framework, achieves state-of-the-art results on the ImgEdit and GEdit-Bench benchmarks, scoring 4.49 and 7.83, respectively. Crucially, our framework is model-agnostic, delivering substantial performance gains when applied to diverse base models like Qwen-Image-Edit and FLUX-Kontext, demonstrating its wide applicability. Code and models are publicly available at https://github.com/PKU-YuanGroup/UniWorld-V2.

PekingUniversity Peking University
·
Oct 19, 2025 2