Self-Improving World Modelling with Latent Actions
Abstract
SWIRL is a self-improvement framework that learns world models from state-only sequences by alternating between forward and inverse dynamics modeling with variational information maximization and ELBO maximization, achieving improved performance on various reasoning and planning benchmarks.
Internal modelling of the world -- predicting transitions between previous states X and next states Y under actions Z -- is essential to reasoning and planning for LLMs and VLMs. Learning such models typically requires costly action-labelled trajectories. We propose SWIRL, a self-improvement framework that learns from state-only sequences by treating actions as a latent variable and alternating between Forward World Modelling (FWM) P_θ(Y|X,Z) and an Inverse Dynamics Modelling (IDM) Q_φ(Z|X,Y). SWIRL iterates two phases: (1) Variational Information Maximisation, which updates the FWM to generate next states that maximise conditional mutual information with latent actions given prior states, encouraging identifiable consistency; and (2) ELBO Maximisation, which updates the IDM to explain observed transitions, effectively performing coordinate ascent. Both models are trained with reinforcement learning (specifically, GRPO) with the opposite frozen model's log-probability as a reward signal. We provide theoretical learnability guarantees for both updates, and evaluate SWIRL on LLMs and VLMs across multiple environments: single-turn and multi-turn open-world visual dynamics and synthetic textual environments for physics, web, and tool calling. SWIRL achieves gains of 16% on AURORABench, 28% on ByteMorph, 16% on WorldPredictionBench, and 14% on StableToolBench.
Community
Internal modelling of the world -- predicting transitions between previous states X and next states Y under actions Z -- is essential to reasoning and planning for LLMs and VLMs. Learning such models typically requires costly action-labelled trajectories. We propose SWIRL, a self-improvement framework that learns from state-only sequences by treating actions as a latent variable and alternating between Forward World Modelling (FWM) Pθ(Y|X,Z) and an Inverse Dynamics Modelling (IDM) Qϕ(Z|X,Y). SWIRL iterates two phases: (1) Variational Information Maximisation, which updates the FWM to generate next states that maximise conditional mutual information with latent actions given prior states, encouraging identifiable consistency; and (2) ELBO Maximisation, which updates the IDM to explain observed transitions, effectively performing coordinate ascent. Both models are trained with reinforcement learning (specifically, GRPO) with the opposite frozen model's log-probability as a reward signal. We provide theoretical learnability guarantees for both updates, and evaluate SWIRL on LLMs and VLMs across multiple environments: single-turn and multi-turn open-world visual dynamics and synthetic textual environments for physics, web, and tool calling. SWIRL achieves gains of 16% on AURORABench, 28% on ByteMorph, 16% on WorldPredictionBench, and 14% on StableToolBench.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- When Actions Teach You to Think: Reasoning-Action Synergy via Reinforcement Learning in Conversational Agents (2025)
- Reinforcement World Model Learning for LLM-based Agents (2026)
- LangForce: Bayesian Decomposition of Vision Language Action Models via Latent Action Queries (2026)
- TKG-Thinker: Towards Dynamic Reasoning over Temporal Knowledge Graphs via Agentic Reinforcement Learning (2026)
- From Word to World: Can Large Language Models be Implicit Text-based World Models? (2025)
- Generative Scenario Rollouts for End-to-End Autonomous Driving (2026)
- Temp-R1: A Unified Autonomous Agent for Complex Temporal KGQA via Reverse Curriculum Reinforcement Learning (2026)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper