from mmengine.config import read_base from opencompass.models import TurboMindModel with read_base(): from opencompass.configs.datasets.longbench.longbench import \ longbench_datasets # noqa: F401, E501 from opencompass.configs.datasets.needlebench.needlebench_base.needlebench_base_gen import \ needlebench_datasets # noqa: F401, E501 # summarizer from opencompass.configs.summarizers.groups.longbench import \ longbench_summary_groups # noqa: F401, E501 from opencompass.configs.summarizers.needlebench import \ needlebench_internal_200k_summarizer # noqa: F401, E501 from opencompass.configs.summarizers.needlebench import ( needlebench_internal_32k_summarizer, needlebench_internal_100k_summarizer) from ...rjob import eval, infer # noqa: F401, E501 needlebench_internal_32k_summary_groups = needlebench_internal_32k_summarizer[ 'summary_groups'] needlebench_internal_100k_summary_groups = ( needlebench_internal_100k_summarizer['summary_groups']) needlebench_internal_200k_summary_groups = ( needlebench_internal_200k_summarizer['summary_groups']) models = [ dict( type=TurboMindModel, abbr='qwen3-8b-base-turbomind', path='Qwen/Qwen3-8B-Base', engine_config=dict(session_len=264192, max_batch_size=8, tp=1), gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048, min_out_len=2), max_seq_len=264192, max_out_len=500, batch_size=1, drop_middle=True, run_cfg=dict(num_gpus=1), ) ] datasets = [ v[0] for k, v in locals().items() if k.endswith('_datasets') and isinstance(v, list) and len(v) > 0 ] for d in datasets: d['reader_cfg']['test_range'] = '[0:16]'