data_path="./test_datasets" n_gpu=1 batch_size=1 batch_size_valid=1 epoch=20 update_freq=1 #lr=1e-3 #MASTER_PORT=10075 #arch=pocket_ranking export NCCL_ASYNC_ERROR_HANDLING=1 export OMP_NUM_THREADS=1 arch=${1} # model architecture weight_path=${2} # path for pretrained model results_path=${3} # result_file=${4} # lr=${5} # learning rate MASTER_PORT=${6} train_ligf=${7} # !! input path for training ligands file (.csv format) test_ligf=${8} # !! input path for test ligands file (.csv format) device=${9} # cuda device if [[ "$arch" == "pocketregression" ]] || [[ "$arch" == "DTA" ]]; then loss="mseloss" else loss="rank_softmax" fi CUDA_VISIBLE_DEVICES=${device} python -m torch.distributed.launch --nproc_per_node=$n_gpu --master_port=$MASTER_PORT $(which unicore-train) $data_path --user-dir ./unimol --train-subset train --valid-subset valid \ --results-path $results_path \ --num-workers 8 --ddp-backend=c10d \ --task train_task --loss ${loss} --arch $arch \ --max-pocket-atoms 256 \ --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-8 --clip-norm 1.0 \ --lr-scheduler polynomial_decay --lr $lr --max-epoch $epoch --batch-size $batch_size --batch-size-valid $batch_size_valid \ --update-freq $update_freq --seed 1 \ --log-interval 1 --log-format simple \ --validate-interval 1 --validate-begin-epoch 15 \ --best-checkpoint-metric valid_mean_r2 --patience 100 --all-gather-list-size 2048000 \ --no-save --save-dir $results_path --tmp-save-dir $results_path \ --find-unused-parameters \ --maximize-best-checkpoint-metric \ --valid-set TYK2 \ --max-lignum 512 --test-max-lignum 10000 \ --restore-model $weight_path --few-shot true \ --fp16 --fp16-init-scale 4 --fp16-scale-window 256 \ --active-learning-resfile ${result_file} \ --case-train-ligfile ${train_ligf} --case-test-ligfile ${test_ligf}