File size: 9,233 Bytes
94391f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pandas as pd
import numpy as np
import subprocess
import os
from pathlib import Path
import random
import argparse
import json


def parse_arguments():
    parser = argparse.ArgumentParser(description='Active Learning Cycle for Ligand Prediction')

    # Input/Output arguments
    parser.add_argument('--input_file', type=str, required=True,
                        help='Input CSV file containing ligand data (e.g., tyk2_fep.csv)')
    parser.add_argument('--results_dir', type=str, required=True,
                        help='Base directory for storing all results')
    parser.add_argument('--al_batch_size', type=int, required=True,
                        help='Number of samples for each active learning batch')

    # Experiment configuration
    parser.add_argument('--num_repeats', type=int, default=5,
                        help='Number of repeated experiments (default: 5)')
    parser.add_argument('--num_cycles', type=int, required=True,
                        help='Number of active learning cycles')

    # Model configuration
    parser.add_argument('--arch', type=str, required=True,
                        help='Model architecture')
    parser.add_argument('--weight_path', type=str, required=True,
                        help='Path to pretrained model weights')
    parser.add_argument('--lr', type=float, default=0.001,
                        help='Learning rate (default: 0.001)')
    parser.add_argument('--master_port', type=int, default=29500,
                        help='Master port for distributed training (default: 29500)')
    parser.add_argument('--device', type=int, default=0,
                        help='Device to run the model on (default: cuda:0)')
    parser.add_argument('--begin_greedy', type=int, default=0,
                        help='iter of begin to be pure greedy, using half greedy before')

    # Random seed
    parser.add_argument('--base_seed', type=int, default=42,
                        help='Base random seed (default: 42)')

    return parser.parse_args()


def run_model(arch, weight_path, results_path, result_file, lr, master_port, train_ligf, test_ligf, device):
    import os
    project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    cmd = [
        "bash", "./active_learning_scripts/run_model.sh",
        arch,
        weight_path,
        results_path,
        result_file,
        str(lr),
        str(master_port),
        train_ligf,
        test_ligf,
        str(device)
    ]
    subprocess.run(cmd, check=True, cwd=project_root)


def prepare_initial_split(input_file, results_dir, al_batch_size, repeat_idx, cycle_idx, base_seed):
    # Read all ligands
    df = pd.read_csv(input_file)

    # Set random seed for reproducibility
    random.seed(base_seed + repeat_idx)  # Different seed for each repeat

    # Randomly select ligands for training and testing
    all_indices = list(range(len(df)))
    train_indices = random.sample(all_indices, al_batch_size)
    test_indices = [i for i in all_indices if i not in train_indices]

    # Create train and test files
    train_df = df.iloc[train_indices]
    test_df = df.iloc[test_indices]

    # Create file names with repeat and cycle information
    train_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
    test_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")

    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(train_file), exist_ok=True)

    # Save files
    train_df.to_csv(train_file, index=False)
    test_df.to_csv(test_file, index=False)

    return train_file, test_file


def read_jsonl_predictions(results_path, result_file):
    """
    Read predictions from jsonl file and calculate average predictions
    Returns a dictionary mapping SMILES to average predictions
    """
    predictions = {}
    all_predictions = []
    smiles_list = None

    jsonl_path = os.path.join(results_path, result_file)
    with open(jsonl_path, 'r') as f:
        # Read first line to get SMILES list
        first_line = f.readline()
        smiles_list = json.loads(first_line.strip())["tyk2"]["smiles"]

        # Read rest of lines containing predictions
        for line in f:
            pred_line = json.loads(line.strip())
            all_predictions.append(pred_line["tyk2"]["pred"])

    # Convert to numpy array for easier computation
    pred_array = np.array(all_predictions)
    # Calculate mean predictions
    mean_predictions = np.mean(pred_array, axis=0)

    # Create dictionary mapping SMILES to average predictions
    for smile, pred in zip(smiles_list, mean_predictions):
        predictions[smile] = float(pred)

    return predictions


def update_splits(results_dir, results_path, result_file, prev_train_file, prev_test_file, repeat_idx, cycle_idx,
                  al_batch_size, begin_greedy):
    # Read predictions from jsonl file
    predictions = read_jsonl_predictions(results_path, result_file)

    # Read previous test file
    test_df = pd.read_csv(prev_test_file)

    # Add predictions to test_df
    test_df['prediction'] = test_df['Smiles'].map(predictions)

    # Sort by predictions (high to low)
    test_df_sorted = test_df.sort_values('prediction', ascending=False)

    # Read previous train file
    train_df = pd.read_csv(prev_train_file)

    # Create new file names
    new_train_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
    new_test_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")

    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(new_train_file), exist_ok=True)

    if cycle_idx >= begin_greedy:
        # Take top al_batch_size compounds for training
        new_train_compounds = test_df_sorted.head(al_batch_size)
        remaining_test_compounds = test_df_sorted.iloc[al_batch_size:]
    else:
        # use half greedy approach
        new_train_compounds_tmp_1 = test_df_sorted.head(al_batch_size//2)
        remaining_test_compounds_tmp = test_df_sorted.iloc[al_batch_size//2:]
        all_indices = list(range(len(remaining_test_compounds_tmp)))

        train_indices = random.sample(all_indices, al_batch_size - al_batch_size//2)
        test_indices = [i for i in all_indices if i not in train_indices]
        remaining_test_compounds = remaining_test_compounds_tmp.iloc[test_indices]
        new_train_compounds_tmp_2 = remaining_test_compounds_tmp.iloc[train_indices]
        new_train_compounds = pd.concat([new_train_compounds_tmp_1, new_train_compounds_tmp_2])


    # Combine with previous training data
    combined_train_df = pd.concat([train_df, new_train_compounds])

    for _ in range(3):
        print("########################################")
    print("Cycling: ", cycle_idx)
    print("top_1p: {}/100".format(combined_train_df['top_1p'].sum()))
    print("top_2p: {}/200".format(combined_train_df['top_2p'].sum()))
    print("top_5p: {}/500".format(combined_train_df['top_5p'].sum()))

    # Save files
    combined_train_df.to_csv(new_train_file, index=False)
    remaining_test_compounds.to_csv(new_test_file, index=False)

    return new_train_file, new_test_file


def run_active_learning(args):
    # Create base results directory
    os.system(f"rm -rf {args.results_dir}")
    os.makedirs(args.results_dir, exist_ok=True)

    for repeat_idx in range(args.num_repeats):
        print(f"Starting repeat {repeat_idx}")

        # Initial split for this repeat
        train_file, test_file = prepare_initial_split(
            args.input_file,
            args.results_dir,
            args.al_batch_size,
            repeat_idx,
            0,  # First cycle
            args.base_seed
        )

        for cycle_idx in range(args.num_cycles):
            print(f"Running cycle {cycle_idx} for repeat {repeat_idx}")

            # Create results directory for this cycle
            results_path = args.results_dir

            # Result file name
            result_file = f"repeat_{repeat_idx}_cycle_{cycle_idx}_results.jsonl"
            if os.path.exists(f"{args.results_dir}/{result_file}"):
                os.remove(f"{args.results_dir}/{result_file}")

            # Run the model
            run_model(
                arch=args.arch,
                weight_path=args.weight_path,
                results_path=results_path,
                result_file=result_file,
                lr=args.lr,
                master_port=args.master_port,
                train_ligf=train_file,
                test_ligf=test_file,
                device=args.device
            )

            # Update splits for next cycle
            if cycle_idx < args.num_cycles - 1:  # Don't update after last cycle
                train_file, test_file = update_splits(
                    args.results_dir,
                    results_path,
                    result_file,
                    train_file,
                    test_file,
                    repeat_idx,
                    cycle_idx + 1,
                    args.al_batch_size,
                    args.begin_greedy
                )


if __name__ == "__main__":
    args = parse_arguments()
    run_active_learning(args)