File size: 9,233 Bytes
94391f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import pandas as pd
import numpy as np
import subprocess
import os
from pathlib import Path
import random
import argparse
import json
def parse_arguments():
parser = argparse.ArgumentParser(description='Active Learning Cycle for Ligand Prediction')
# Input/Output arguments
parser.add_argument('--input_file', type=str, required=True,
help='Input CSV file containing ligand data (e.g., tyk2_fep.csv)')
parser.add_argument('--results_dir', type=str, required=True,
help='Base directory for storing all results')
parser.add_argument('--al_batch_size', type=int, required=True,
help='Number of samples for each active learning batch')
# Experiment configuration
parser.add_argument('--num_repeats', type=int, default=5,
help='Number of repeated experiments (default: 5)')
parser.add_argument('--num_cycles', type=int, required=True,
help='Number of active learning cycles')
# Model configuration
parser.add_argument('--arch', type=str, required=True,
help='Model architecture')
parser.add_argument('--weight_path', type=str, required=True,
help='Path to pretrained model weights')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate (default: 0.001)')
parser.add_argument('--master_port', type=int, default=29500,
help='Master port for distributed training (default: 29500)')
parser.add_argument('--device', type=int, default=0,
help='Device to run the model on (default: cuda:0)')
parser.add_argument('--begin_greedy', type=int, default=0,
help='iter of begin to be pure greedy, using half greedy before')
# Random seed
parser.add_argument('--base_seed', type=int, default=42,
help='Base random seed (default: 42)')
return parser.parse_args()
def run_model(arch, weight_path, results_path, result_file, lr, master_port, train_ligf, test_ligf, device):
import os
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
cmd = [
"bash", "./active_learning_scripts/run_model.sh",
arch,
weight_path,
results_path,
result_file,
str(lr),
str(master_port),
train_ligf,
test_ligf,
str(device)
]
subprocess.run(cmd, check=True, cwd=project_root)
def prepare_initial_split(input_file, results_dir, al_batch_size, repeat_idx, cycle_idx, base_seed):
# Read all ligands
df = pd.read_csv(input_file)
# Set random seed for reproducibility
random.seed(base_seed + repeat_idx) # Different seed for each repeat
# Randomly select ligands for training and testing
all_indices = list(range(len(df)))
train_indices = random.sample(all_indices, al_batch_size)
test_indices = [i for i in all_indices if i not in train_indices]
# Create train and test files
train_df = df.iloc[train_indices]
test_df = df.iloc[test_indices]
# Create file names with repeat and cycle information
train_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
test_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(train_file), exist_ok=True)
# Save files
train_df.to_csv(train_file, index=False)
test_df.to_csv(test_file, index=False)
return train_file, test_file
def read_jsonl_predictions(results_path, result_file):
"""
Read predictions from jsonl file and calculate average predictions
Returns a dictionary mapping SMILES to average predictions
"""
predictions = {}
all_predictions = []
smiles_list = None
jsonl_path = os.path.join(results_path, result_file)
with open(jsonl_path, 'r') as f:
# Read first line to get SMILES list
first_line = f.readline()
smiles_list = json.loads(first_line.strip())["tyk2"]["smiles"]
# Read rest of lines containing predictions
for line in f:
pred_line = json.loads(line.strip())
all_predictions.append(pred_line["tyk2"]["pred"])
# Convert to numpy array for easier computation
pred_array = np.array(all_predictions)
# Calculate mean predictions
mean_predictions = np.mean(pred_array, axis=0)
# Create dictionary mapping SMILES to average predictions
for smile, pred in zip(smiles_list, mean_predictions):
predictions[smile] = float(pred)
return predictions
def update_splits(results_dir, results_path, result_file, prev_train_file, prev_test_file, repeat_idx, cycle_idx,
al_batch_size, begin_greedy):
# Read predictions from jsonl file
predictions = read_jsonl_predictions(results_path, result_file)
# Read previous test file
test_df = pd.read_csv(prev_test_file)
# Add predictions to test_df
test_df['prediction'] = test_df['Smiles'].map(predictions)
# Sort by predictions (high to low)
test_df_sorted = test_df.sort_values('prediction', ascending=False)
# Read previous train file
train_df = pd.read_csv(prev_train_file)
# Create new file names
new_train_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_train.csv")
new_test_file = os.path.join(results_dir, f"repeat_{repeat_idx}_cycle_{cycle_idx}_test.csv")
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(new_train_file), exist_ok=True)
if cycle_idx >= begin_greedy:
# Take top al_batch_size compounds for training
new_train_compounds = test_df_sorted.head(al_batch_size)
remaining_test_compounds = test_df_sorted.iloc[al_batch_size:]
else:
# use half greedy approach
new_train_compounds_tmp_1 = test_df_sorted.head(al_batch_size//2)
remaining_test_compounds_tmp = test_df_sorted.iloc[al_batch_size//2:]
all_indices = list(range(len(remaining_test_compounds_tmp)))
train_indices = random.sample(all_indices, al_batch_size - al_batch_size//2)
test_indices = [i for i in all_indices if i not in train_indices]
remaining_test_compounds = remaining_test_compounds_tmp.iloc[test_indices]
new_train_compounds_tmp_2 = remaining_test_compounds_tmp.iloc[train_indices]
new_train_compounds = pd.concat([new_train_compounds_tmp_1, new_train_compounds_tmp_2])
# Combine with previous training data
combined_train_df = pd.concat([train_df, new_train_compounds])
for _ in range(3):
print("########################################")
print("Cycling: ", cycle_idx)
print("top_1p: {}/100".format(combined_train_df['top_1p'].sum()))
print("top_2p: {}/200".format(combined_train_df['top_2p'].sum()))
print("top_5p: {}/500".format(combined_train_df['top_5p'].sum()))
# Save files
combined_train_df.to_csv(new_train_file, index=False)
remaining_test_compounds.to_csv(new_test_file, index=False)
return new_train_file, new_test_file
def run_active_learning(args):
# Create base results directory
os.system(f"rm -rf {args.results_dir}")
os.makedirs(args.results_dir, exist_ok=True)
for repeat_idx in range(args.num_repeats):
print(f"Starting repeat {repeat_idx}")
# Initial split for this repeat
train_file, test_file = prepare_initial_split(
args.input_file,
args.results_dir,
args.al_batch_size,
repeat_idx,
0, # First cycle
args.base_seed
)
for cycle_idx in range(args.num_cycles):
print(f"Running cycle {cycle_idx} for repeat {repeat_idx}")
# Create results directory for this cycle
results_path = args.results_dir
# Result file name
result_file = f"repeat_{repeat_idx}_cycle_{cycle_idx}_results.jsonl"
if os.path.exists(f"{args.results_dir}/{result_file}"):
os.remove(f"{args.results_dir}/{result_file}")
# Run the model
run_model(
arch=args.arch,
weight_path=args.weight_path,
results_path=results_path,
result_file=result_file,
lr=args.lr,
master_port=args.master_port,
train_ligf=train_file,
test_ligf=test_file,
device=args.device
)
# Update splits for next cycle
if cycle_idx < args.num_cycles - 1: # Don't update after last cycle
train_file, test_file = update_splits(
args.results_dir,
results_path,
result_file,
train_file,
test_file,
repeat_idx,
cycle_idx + 1,
args.al_batch_size,
args.begin_greedy
)
if __name__ == "__main__":
args = parse_arguments()
run_active_learning(args) |