|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import reduce |
|
|
import importlib |
|
|
import math |
|
|
import sys |
|
|
from operator import mul |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from typing import Optional, Tuple, Sequence |
|
|
|
|
|
from openfold.model.primitives import Linear, LayerNorm, ipa_point_weights_init_ |
|
|
from openfold.np.residue_constants import ( |
|
|
restype_rigid_group_default_frame, |
|
|
restype_atom14_to_rigid_group, |
|
|
restype_atom14_mask, |
|
|
restype_atom14_rigid_group_positions, |
|
|
) |
|
|
from openfold.utils.feats import ( |
|
|
frames_and_literature_positions_to_atom14_pos, |
|
|
torsion_angles_to_frames, |
|
|
) |
|
|
from openfold.utils.precision_utils import is_fp16_enabled |
|
|
from openfold.utils.rigid_utils import Rotation, Rigid |
|
|
from openfold.utils.tensor_utils import ( |
|
|
dict_multimap, |
|
|
permute_final_dims, |
|
|
flatten_final_dims, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AngleResnetBlock(nn.Module): |
|
|
def __init__(self, c_hidden): |
|
|
""" |
|
|
Args: |
|
|
c_hidden: |
|
|
Hidden channel dimension |
|
|
""" |
|
|
super(AngleResnetBlock, self).__init__() |
|
|
|
|
|
self.c_hidden = c_hidden |
|
|
|
|
|
self.linear_1 = Linear(self.c_hidden, self.c_hidden, init="relu") |
|
|
self.linear_2 = Linear(self.c_hidden, self.c_hidden, init="final") |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
def forward(self, a: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
s_initial = a |
|
|
|
|
|
a = self.relu(a) |
|
|
a = self.linear_1(a) |
|
|
a = self.relu(a) |
|
|
a = self.linear_2(a) |
|
|
|
|
|
return a + s_initial |
|
|
|
|
|
|
|
|
class AngleResnet(nn.Module): |
|
|
""" |
|
|
Implements Algorithm 20, lines 11-14 |
|
|
""" |
|
|
|
|
|
def __init__(self, c_in, c_hidden, no_blocks, no_angles, epsilon): |
|
|
""" |
|
|
Args: |
|
|
c_in: |
|
|
Input channel dimension |
|
|
c_hidden: |
|
|
Hidden channel dimension |
|
|
no_blocks: |
|
|
Number of resnet blocks |
|
|
no_angles: |
|
|
Number of torsion angles to generate |
|
|
epsilon: |
|
|
Small constant for normalization |
|
|
""" |
|
|
super(AngleResnet, self).__init__() |
|
|
|
|
|
self.c_in = c_in |
|
|
self.c_hidden = c_hidden |
|
|
self.no_blocks = no_blocks |
|
|
self.no_angles = no_angles |
|
|
self.eps = epsilon |
|
|
|
|
|
self.linear_in = Linear(self.c_in, self.c_hidden) |
|
|
self.linear_initial = Linear(self.c_in, self.c_hidden) |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for _ in range(self.no_blocks): |
|
|
layer = AngleResnetBlock(c_hidden=self.c_hidden) |
|
|
self.layers.append(layer) |
|
|
|
|
|
self.linear_out = Linear(self.c_hidden, self.no_angles * 2) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
def forward( |
|
|
self, s: torch.Tensor, s_initial: torch.Tensor |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Args: |
|
|
s: |
|
|
[*, C_hidden] single embedding |
|
|
s_initial: |
|
|
[*, C_hidden] single embedding as of the start of the |
|
|
StructureModule |
|
|
Returns: |
|
|
[*, no_angles, 2] predicted angles |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s_initial = self.relu(s_initial) |
|
|
s_initial = self.linear_initial(s_initial) |
|
|
s = self.relu(s) |
|
|
s = self.linear_in(s) |
|
|
s = s + s_initial |
|
|
|
|
|
for l in self.layers: |
|
|
s = l(s) |
|
|
|
|
|
s = self.relu(s) |
|
|
|
|
|
|
|
|
s = self.linear_out(s) |
|
|
|
|
|
|
|
|
s = s.view(s.shape[:-1] + (-1, 2)) |
|
|
|
|
|
unnormalized_s = s |
|
|
norm_denom = torch.sqrt( |
|
|
torch.clamp( |
|
|
torch.sum(s ** 2, dim=-1, keepdim=True), |
|
|
min=self.eps, |
|
|
) |
|
|
) |
|
|
s = s / norm_denom |
|
|
|
|
|
return unnormalized_s, s |
|
|
|
|
|
|
|
|
class InvariantPointAttention(nn.Module): |
|
|
""" |
|
|
Implements Algorithm 22. |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
c_s: int, |
|
|
c_z: int, |
|
|
c_hidden: int, |
|
|
no_heads: int, |
|
|
no_qk_points: int, |
|
|
no_v_points: int, |
|
|
inf: float = 1e5, |
|
|
eps: float = 1e-8, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
c_s: |
|
|
Single representation channel dimension |
|
|
c_z: |
|
|
Pair representation channel dimension |
|
|
c_hidden: |
|
|
Hidden channel dimension |
|
|
no_heads: |
|
|
Number of attention heads |
|
|
no_qk_points: |
|
|
Number of query/key points to generate |
|
|
no_v_points: |
|
|
Number of value points to generate |
|
|
""" |
|
|
super(InvariantPointAttention, self).__init__() |
|
|
|
|
|
self.c_s = c_s |
|
|
self.c_z = c_z |
|
|
self.c_hidden = c_hidden |
|
|
self.no_heads = no_heads |
|
|
self.no_qk_points = no_qk_points |
|
|
self.no_v_points = no_v_points |
|
|
self.inf = inf |
|
|
self.eps = eps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hc = self.c_hidden * self.no_heads |
|
|
self.linear_q = Linear(self.c_s, hc) |
|
|
self.linear_kv = Linear(self.c_s, 2 * hc) |
|
|
|
|
|
hpq = self.no_heads * self.no_qk_points * 3 |
|
|
self.linear_q_points = Linear(self.c_s, hpq) |
|
|
|
|
|
hpkv = self.no_heads * (self.no_qk_points + self.no_v_points) * 3 |
|
|
self.linear_kv_points = Linear(self.c_s, hpkv) |
|
|
|
|
|
hpv = self.no_heads * self.no_v_points * 3 |
|
|
|
|
|
self.linear_b = Linear(self.c_z, self.no_heads) |
|
|
|
|
|
self.head_weights = nn.Parameter(torch.zeros((no_heads))) |
|
|
ipa_point_weights_init_(self.head_weights) |
|
|
|
|
|
concat_out_dim = self.no_heads * ( |
|
|
self.c_z + self.c_hidden + self.no_v_points * 4 |
|
|
) |
|
|
self.linear_out = Linear(concat_out_dim, self.c_s, init="final") |
|
|
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
self.softplus = nn.Softplus() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
s: torch.Tensor, |
|
|
z: Optional[torch.Tensor], |
|
|
r: Rigid, |
|
|
mask: torch.Tensor, |
|
|
inplace_safe: bool = False, |
|
|
_offload_inference: bool = False, |
|
|
_z_reference_list: Optional[Sequence[torch.Tensor]] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
s: |
|
|
[*, N_res, C_s] single representation |
|
|
z: |
|
|
[*, N_res, N_res, C_z] pair representation |
|
|
r: |
|
|
[*, N_res] transformation object |
|
|
mask: |
|
|
[*, N_res] mask |
|
|
Returns: |
|
|
[*, N_res, C_s] single representation update |
|
|
""" |
|
|
if(_offload_inference and inplace_safe): |
|
|
z = _z_reference_list |
|
|
else: |
|
|
z = [z] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q = self.linear_q(s) |
|
|
kv = self.linear_kv(s) |
|
|
|
|
|
|
|
|
q = q.view(q.shape[:-1] + (self.no_heads, -1)) |
|
|
|
|
|
|
|
|
kv = kv.view(kv.shape[:-1] + (self.no_heads, -1)) |
|
|
|
|
|
|
|
|
k, v = torch.split(kv, self.c_hidden, dim=-1) |
|
|
|
|
|
|
|
|
q_pts = self.linear_q_points(s) |
|
|
|
|
|
|
|
|
|
|
|
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1) |
|
|
q_pts = torch.stack(q_pts, dim=-1) |
|
|
q_pts = r[..., None].apply(q_pts) |
|
|
|
|
|
|
|
|
q_pts = q_pts.view( |
|
|
q_pts.shape[:-2] + (self.no_heads, self.no_qk_points, 3) |
|
|
) |
|
|
|
|
|
|
|
|
kv_pts = self.linear_kv_points(s) |
|
|
|
|
|
|
|
|
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1) |
|
|
kv_pts = torch.stack(kv_pts, dim=-1) |
|
|
kv_pts = r[..., None].apply(kv_pts) |
|
|
|
|
|
|
|
|
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.no_heads, -1, 3)) |
|
|
|
|
|
|
|
|
k_pts, v_pts = torch.split( |
|
|
kv_pts, [self.no_qk_points, self.no_v_points], dim=-2 |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = self.linear_b(z[0]) |
|
|
|
|
|
if(_offload_inference): |
|
|
assert(sys.getrefcount(z[0]) == 2) |
|
|
z[0] = z[0].cpu() |
|
|
|
|
|
|
|
|
if(is_fp16_enabled()): |
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
|
a = torch.matmul( |
|
|
permute_final_dims(q.float(), (1, 0, 2)), |
|
|
permute_final_dims(k.float(), (1, 2, 0)), |
|
|
) |
|
|
else: |
|
|
a = torch.matmul( |
|
|
permute_final_dims(q, (1, 0, 2)), |
|
|
permute_final_dims(k, (1, 2, 0)), |
|
|
) |
|
|
|
|
|
a *= math.sqrt(1.0 / (3 * self.c_hidden)) |
|
|
a += (math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))) |
|
|
|
|
|
|
|
|
pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5) |
|
|
if(inplace_safe): |
|
|
pt_att *= pt_att |
|
|
else: |
|
|
pt_att = pt_att ** 2 |
|
|
|
|
|
|
|
|
pt_att = sum(torch.unbind(pt_att, dim=-1)) |
|
|
head_weights = self.softplus(self.head_weights).view( |
|
|
*((1,) * len(pt_att.shape[:-2]) + (-1, 1)) |
|
|
) |
|
|
head_weights = head_weights * math.sqrt( |
|
|
1.0 / (3 * (self.no_qk_points * 9.0 / 2)) |
|
|
) |
|
|
if(inplace_safe): |
|
|
pt_att *= head_weights |
|
|
else: |
|
|
pt_att = pt_att * head_weights |
|
|
|
|
|
|
|
|
pt_att = torch.sum(pt_att, dim=-1) * (-0.5) |
|
|
|
|
|
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2) |
|
|
square_mask = self.inf * (square_mask - 1) |
|
|
|
|
|
|
|
|
pt_att = permute_final_dims(pt_att, (2, 0, 1)) |
|
|
|
|
|
if(inplace_safe): |
|
|
a += pt_att |
|
|
del pt_att |
|
|
a += square_mask.unsqueeze(-3) |
|
|
|
|
|
attn_core_inplace_cuda.forward_( |
|
|
a, |
|
|
reduce(mul, a.shape[:-1]), |
|
|
a.shape[-1], |
|
|
) |
|
|
else: |
|
|
a = a + pt_att |
|
|
a = a + square_mask.unsqueeze(-3) |
|
|
a = self.softmax(a) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o = torch.matmul( |
|
|
a, v.transpose(-2, -3).to(dtype=a.dtype) |
|
|
).transpose(-2, -3) |
|
|
|
|
|
|
|
|
o = flatten_final_dims(o, 2) |
|
|
|
|
|
|
|
|
if(inplace_safe): |
|
|
v_pts = permute_final_dims(v_pts, (1, 3, 0, 2)) |
|
|
o_pt = [ |
|
|
torch.matmul(a, v.to(a.dtype)) |
|
|
for v in torch.unbind(v_pts, dim=-3) |
|
|
] |
|
|
o_pt = torch.stack(o_pt, dim=-3) |
|
|
else: |
|
|
o_pt = torch.sum( |
|
|
( |
|
|
a[..., None, :, :, None] |
|
|
* permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :] |
|
|
), |
|
|
dim=-2, |
|
|
) |
|
|
|
|
|
|
|
|
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1)) |
|
|
o_pt = r[..., None, None].invert_apply(o_pt) |
|
|
|
|
|
|
|
|
o_pt_norm = flatten_final_dims( |
|
|
torch.sqrt(torch.sum(o_pt ** 2, dim=-1) + self.eps), 2 |
|
|
) |
|
|
|
|
|
|
|
|
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3) |
|
|
|
|
|
if(_offload_inference): |
|
|
z[0] = z[0].to(o_pt.device) |
|
|
|
|
|
|
|
|
o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype)) |
|
|
|
|
|
|
|
|
o_pair = flatten_final_dims(o_pair, 2) |
|
|
|
|
|
|
|
|
s = self.linear_out( |
|
|
torch.cat( |
|
|
(o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1 |
|
|
).to(dtype=z[0].dtype) |
|
|
) |
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
class BackboneUpdate(nn.Module): |
|
|
""" |
|
|
Implements part of Algorithm 23. |
|
|
""" |
|
|
|
|
|
def __init__(self, c_s): |
|
|
""" |
|
|
Args: |
|
|
c_s: |
|
|
Single representation channel dimension |
|
|
""" |
|
|
super(BackboneUpdate, self).__init__() |
|
|
|
|
|
self.c_s = c_s |
|
|
|
|
|
self.linear = Linear(self.c_s, 6, init="final") |
|
|
|
|
|
def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Args: |
|
|
[*, N_res, C_s] single representation |
|
|
Returns: |
|
|
[*, N_res, 6] update vector |
|
|
""" |
|
|
|
|
|
update = self.linear(s) |
|
|
|
|
|
return update |
|
|
|
|
|
|
|
|
class StructureModuleTransitionLayer(nn.Module): |
|
|
def __init__(self, c): |
|
|
super(StructureModuleTransitionLayer, self).__init__() |
|
|
|
|
|
self.c = c |
|
|
|
|
|
self.linear_1 = Linear(self.c, self.c, init="relu") |
|
|
self.linear_2 = Linear(self.c, self.c, init="relu") |
|
|
self.linear_3 = Linear(self.c, self.c, init="final") |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
def forward(self, s): |
|
|
s_initial = s |
|
|
s = self.linear_1(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_2(s) |
|
|
s = self.relu(s) |
|
|
s = self.linear_3(s) |
|
|
|
|
|
s = s + s_initial |
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
class StructureModuleTransition(nn.Module): |
|
|
def __init__(self, c, num_layers, dropout_rate): |
|
|
super(StructureModuleTransition, self).__init__() |
|
|
|
|
|
self.c = c |
|
|
self.num_layers = num_layers |
|
|
self.dropout_rate = dropout_rate |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for _ in range(self.num_layers): |
|
|
l = StructureModuleTransitionLayer(self.c) |
|
|
self.layers.append(l) |
|
|
|
|
|
self.dropout = nn.Dropout(self.dropout_rate) |
|
|
self.layer_norm = LayerNorm(self.c) |
|
|
|
|
|
def forward(self, s): |
|
|
for l in self.layers: |
|
|
s = l(s) |
|
|
|
|
|
s = self.dropout(s) |
|
|
s = self.layer_norm(s) |
|
|
|
|
|
return s |
|
|
|
|
|
|
|
|
class StructureModule(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
c_s, |
|
|
c_z, |
|
|
c_ipa, |
|
|
c_resnet, |
|
|
no_heads_ipa, |
|
|
no_qk_points, |
|
|
no_v_points, |
|
|
dropout_rate, |
|
|
no_blocks, |
|
|
no_transition_layers, |
|
|
no_resnet_blocks, |
|
|
no_angles, |
|
|
trans_scale_factor, |
|
|
epsilon, |
|
|
inf, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
c_s: |
|
|
Single representation channel dimension |
|
|
c_z: |
|
|
Pair representation channel dimension |
|
|
c_ipa: |
|
|
IPA hidden channel dimension |
|
|
c_resnet: |
|
|
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension |
|
|
no_heads_ipa: |
|
|
Number of IPA heads |
|
|
no_qk_points: |
|
|
Number of query/key points to generate during IPA |
|
|
no_v_points: |
|
|
Number of value points to generate during IPA |
|
|
dropout_rate: |
|
|
Dropout rate used throughout the layer |
|
|
no_blocks: |
|
|
Number of structure module blocks |
|
|
no_transition_layers: |
|
|
Number of layers in the single representation transition |
|
|
(Alg. 23 lines 8-9) |
|
|
no_resnet_blocks: |
|
|
Number of blocks in the angle resnet |
|
|
no_angles: |
|
|
Number of angles to generate in the angle resnet |
|
|
trans_scale_factor: |
|
|
Scale of single representation transition hidden dimension |
|
|
epsilon: |
|
|
Small number used in angle resnet normalization |
|
|
inf: |
|
|
Large number used for attention masking |
|
|
""" |
|
|
super(StructureModule, self).__init__() |
|
|
|
|
|
self.c_s = c_s |
|
|
self.c_z = c_z |
|
|
self.c_ipa = c_ipa |
|
|
self.c_resnet = c_resnet |
|
|
self.no_heads_ipa = no_heads_ipa |
|
|
self.no_qk_points = no_qk_points |
|
|
self.no_v_points = no_v_points |
|
|
self.dropout_rate = dropout_rate |
|
|
self.no_blocks = no_blocks |
|
|
self.no_transition_layers = no_transition_layers |
|
|
self.no_resnet_blocks = no_resnet_blocks |
|
|
self.no_angles = no_angles |
|
|
self.trans_scale_factor = trans_scale_factor |
|
|
self.epsilon = epsilon |
|
|
self.inf = inf |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.layer_norm_s = LayerNorm(self.c_s) |
|
|
self.layer_norm_z = LayerNorm(self.c_z) |
|
|
|
|
|
self.linear_in = Linear(self.c_s, self.c_s) |
|
|
|
|
|
self.ipa = InvariantPointAttention( |
|
|
self.c_s, |
|
|
self.c_z, |
|
|
self.c_ipa, |
|
|
self.no_heads_ipa, |
|
|
self.no_qk_points, |
|
|
self.no_v_points, |
|
|
inf=self.inf, |
|
|
eps=self.epsilon, |
|
|
) |
|
|
|
|
|
self.ipa_dropout = nn.Dropout(self.dropout_rate) |
|
|
self.layer_norm_ipa = LayerNorm(self.c_s) |
|
|
|
|
|
self.transition = StructureModuleTransition( |
|
|
self.c_s, |
|
|
self.no_transition_layers, |
|
|
self.dropout_rate, |
|
|
) |
|
|
|
|
|
self.bb_update = BackboneUpdate(self.c_s) |
|
|
|
|
|
self.angle_resnet = AngleResnet( |
|
|
self.c_s, |
|
|
self.c_resnet, |
|
|
self.no_resnet_blocks, |
|
|
self.no_angles, |
|
|
self.epsilon, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
evoformer_output_dict, |
|
|
aatype, |
|
|
mask=None, |
|
|
inplace_safe=False, |
|
|
_offload_inference=False, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
evoformer_output_dict: |
|
|
Dictionary containing: |
|
|
"single": |
|
|
[*, N_res, C_s] single representation |
|
|
"pair": |
|
|
[*, N_res, N_res, C_z] pair representation |
|
|
aatype: |
|
|
[*, N_res] amino acid indices |
|
|
mask: |
|
|
Optional [*, N_res] sequence mask |
|
|
Returns: |
|
|
A dictionary of outputs |
|
|
""" |
|
|
s = evoformer_output_dict["single"] |
|
|
|
|
|
if mask is None: |
|
|
|
|
|
mask = s.new_ones(s.shape[:-1]) |
|
|
|
|
|
|
|
|
s = self.layer_norm_s(s) |
|
|
|
|
|
|
|
|
z = self.layer_norm_z(evoformer_output_dict["pair"]) |
|
|
|
|
|
z_reference_list = None |
|
|
if(_offload_inference): |
|
|
assert(sys.getrefcount(evoformer_output_dict["pair"]) == 2) |
|
|
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu() |
|
|
z_reference_list = [z] |
|
|
z = None |
|
|
|
|
|
|
|
|
s_initial = s |
|
|
s = self.linear_in(s) |
|
|
|
|
|
|
|
|
rigids = Rigid.identity( |
|
|
s.shape[:-1], |
|
|
s.dtype, |
|
|
s.device, |
|
|
self.training, |
|
|
fmt="quat", |
|
|
) |
|
|
outputs = [] |
|
|
for i in range(self.no_blocks): |
|
|
|
|
|
s = s + self.ipa( |
|
|
s, |
|
|
z, |
|
|
rigids, |
|
|
mask, |
|
|
inplace_safe=inplace_safe, |
|
|
_offload_inference=_offload_inference, |
|
|
_z_reference_list=z_reference_list |
|
|
) |
|
|
s = self.ipa_dropout(s) |
|
|
s = self.layer_norm_ipa(s) |
|
|
s = self.transition(s) |
|
|
|
|
|
|
|
|
rigids = rigids.compose_q_update_vec(self.bb_update(s)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backb_to_global = Rigid( |
|
|
Rotation( |
|
|
rot_mats=rigids.get_rots().get_rot_mats(), |
|
|
quats=None |
|
|
), |
|
|
rigids.get_trans(), |
|
|
) |
|
|
|
|
|
backb_to_global = backb_to_global.scale_translation( |
|
|
self.trans_scale_factor |
|
|
) |
|
|
|
|
|
|
|
|
unnormalized_angles, angles = self.angle_resnet(s, s_initial) |
|
|
|
|
|
all_frames_to_global = self.torsion_angles_to_frames( |
|
|
backb_to_global, |
|
|
angles, |
|
|
aatype, |
|
|
) |
|
|
|
|
|
pred_xyz = self.frames_and_literature_positions_to_atom14_pos( |
|
|
all_frames_to_global, |
|
|
aatype, |
|
|
) |
|
|
|
|
|
scaled_rigids = rigids.scale_translation(self.trans_scale_factor) |
|
|
|
|
|
preds = { |
|
|
"frames": scaled_rigids.to_tensor_7(), |
|
|
"sidechain_frames": all_frames_to_global.to_tensor_4x4(), |
|
|
"unnormalized_angles": unnormalized_angles, |
|
|
"angles": angles, |
|
|
"positions": pred_xyz, |
|
|
"states": s, |
|
|
} |
|
|
|
|
|
outputs.append(preds) |
|
|
|
|
|
rigids = rigids.stop_rot_gradient() |
|
|
|
|
|
del z, z_reference_list |
|
|
|
|
|
if(_offload_inference): |
|
|
evoformer_output_dict["pair"] = ( |
|
|
evoformer_output_dict["pair"].to(s.device) |
|
|
) |
|
|
|
|
|
outputs = dict_multimap(torch.stack, outputs) |
|
|
outputs["single"] = s |
|
|
|
|
|
return outputs |
|
|
|
|
|
def _init_residue_constants(self, float_dtype, device): |
|
|
if not hasattr(self, "default_frames"): |
|
|
self.register_buffer( |
|
|
"default_frames", |
|
|
torch.tensor( |
|
|
restype_rigid_group_default_frame, |
|
|
dtype=float_dtype, |
|
|
device=device, |
|
|
requires_grad=False, |
|
|
), |
|
|
persistent=False, |
|
|
) |
|
|
if not hasattr(self, "group_idx"): |
|
|
self.register_buffer( |
|
|
"group_idx", |
|
|
torch.tensor( |
|
|
restype_atom14_to_rigid_group, |
|
|
device=device, |
|
|
requires_grad=False, |
|
|
), |
|
|
persistent=False, |
|
|
) |
|
|
if not hasattr(self, "atom_mask"): |
|
|
self.register_buffer( |
|
|
"atom_mask", |
|
|
torch.tensor( |
|
|
restype_atom14_mask, |
|
|
dtype=float_dtype, |
|
|
device=device, |
|
|
requires_grad=False, |
|
|
), |
|
|
persistent=False, |
|
|
) |
|
|
if not hasattr(self, "lit_positions"): |
|
|
self.register_buffer( |
|
|
"lit_positions", |
|
|
torch.tensor( |
|
|
restype_atom14_rigid_group_positions, |
|
|
dtype=float_dtype, |
|
|
device=device, |
|
|
requires_grad=False, |
|
|
), |
|
|
persistent=False, |
|
|
) |
|
|
|
|
|
def torsion_angles_to_frames(self, r, alpha, f): |
|
|
|
|
|
self._init_residue_constants(alpha.dtype, alpha.device) |
|
|
|
|
|
return torsion_angles_to_frames(r, alpha, f, self.default_frames) |
|
|
|
|
|
def frames_and_literature_positions_to_atom14_pos( |
|
|
self, r, f |
|
|
): |
|
|
|
|
|
self._init_residue_constants(r.get_rots().dtype, r.get_rots().device) |
|
|
return frames_and_literature_positions_to_atom14_pos( |
|
|
r, |
|
|
f, |
|
|
self.default_frames, |
|
|
self.group_idx, |
|
|
self.atom_mask, |
|
|
self.lit_positions, |
|
|
) |
|
|
|